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NON-TECHNICAL SUMMARY 

Bullying is widespread in schools, and is an important policy issue because of concern that being 

bullied may lead to long-lasting problems: low self-esteem, mental health conditions and poorer 

job prospects. Many studies document a negative correlation between bullying and later outcomes. 

However, there is little evidence available on whether being bullied causes poorer outcomes, and 

if so, how bad the impacts are. Similarly, there is little evidence about the effects of different 

types and frequencies of bullying. This study fills this gap by providing new evidence on the 

consequences of being bullied in high schools in England. 

The researchers used confidential data on over 7,000 school pupils from the Longitudinal Study of 

Young People in England, aged between 14 and 16 years. The data contained information on how 

frequently the children were bullied, and what type of bullying they experienced. Examples 

include being called names, being excluded from social groups, being threatened with violence, 

experiencing violence, and having their possessions taken off them. This information was reported 

by both the child and parent, so the researchers could gain a detailed picture of the patterns of 

bullying. To specifically isolate the effects of being bullied on later outcomes, rather than other 

factors, the researchers compared the outcomes from young people who had the same background 

characteristics, including performance in test scores in primary school, social background, 

demographics, and parental attributes.  

The key findings of this study show that bullying is common in schools, with about 50% of pupils 

reporting experiencing any type of bullying between ages 14 and 16 years. Further, experiencing 

bullying of any kind has negative consequences for academic achievement in schools, with findings 

suggesting that being bullied reduced the probability of success in age 16 high stakes exam by 

about 10% and reduced the probability of staying in education past 16 years old by 10%. 

Importantly, these negative effects are persistent, having negative impact on outcomes measured 

at age 25 years. Indeed, being bullied in school increased the probability of being unemployed at 

age 25 years by about 30%; reduced income by about 2%; and had a large negative impact on 

mental health.  The researchers also found suggestive evidence showing that, while all types of 

bullying have negative consequences, persistent bullying and violent bullying had greater negative 

impacts than less frequent or non-violent bullying.  

Overall, these findings suggest that being bullied in school has negative impact on important 

academic and long-term outcomes, especially unemployment, income and mental ill-health. These 

effects are more pronounced among the pupils experiencing persistent bullying, or violent types 

of bullying. The findings suggest that a targeted approach to reduce more extreme forms of 

bullying may be warranted.  
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ABSTRACT 

We use rich data on a cohort of English adolescents to analyse the long-term effects of 

experiencing bullying victimisation in junior high school. The data contain self-reports of 

five types of bullying and their frequency, for three waves of the data, when the pupils 

were aged 13 to 16 years. Using a variety of estimation strategies - least squares, 

matching, inverse probability weighting, and instrumental variables - we assess the 

effects of bullying victimisation on short- and long-term outcomes, including educational 

achievements, earnings, and mental ill-health at age 25 years. We handle potential 

measurement error in the child self-reports of bullying type and frequency by 

instrumenting with corresponding parental cross-reports. Using a detailed longitudinal 

survey linked to administrative data, we control for many of the determinants of bullying 

victimisation and child outcomes identified in previous literature, paired with 

comprehensive sensitivity analyses to assess the potential role of unobserved variables. 

The pattern of results strongly suggests that there are important long run effects on 

victims - stronger than correlation analysis would otherwise suggest. In particular, we 

find that both type of bullying and its intensity matters for long run outcomes. 
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1. Introduction 

Bullying at school is thought to be a widespread phenomenon that harms many children.1,2  Yet 

there is relatively little quantitative research into the wider and long-term effects of having 

been bullied as a child—most studies concentrate on short term educational outcomes alone. 

Moreover, very little research has explored the implications of the intensity (frequency) of 

bullying, within and across school years. Much of the literature explores the effects of being 

bullied at a point in time, and only on proximate outcomes. Nor has the literature discriminated 

between types of bullying to facilitate an investigation into their differing impacts on outcomes.  

Moreover, despite the high prevalence of bullying, there is little existing research that deals 

with non-random selection into being a victim of bullying. 

The contribution of this paper is that it explores the long-term impacts of a variety of 

types of bullying, of varying intensity, over several years, separately for boys and girls, and 

explores the selectivity issue. We use a rich cohort study of English children, and while we 

focus on methods that deal with selection on observable we also attempt to tease out causal 

effects that allow for selection on unobservables. We marshal a number of empirical 

methodologies to attempt to identify the causal effects of this wide variety of “treatments” on 

a range of age-25 (and earlier) “outcomes” that are recorded in our data. Specifically, we 

analyse the following labour market and education outcomes: Advanced (A) level educational 

qualifications (usually taken at the end of senior high school at the age of 18) and A-level points 

score3; GCSE qualifications (usually taken at 16 at the end of compulsory schooling); having 

a university degree; attending an elite HE institution; dropping out of HE; degree classification; 

log earnings; unemployment; and a mental (ill-) health index. 

Quantifying the effects of bullying is important. There have been many school-based 

anti-bullying programs that, Tofi and Farrington (2011) suggest, bring about significant 

                                                        
1 Throughout we refer to victimisation through bullying at school simply as bullying. Moreover, bullying in this 
paper is wholly school based – we do not consider, for example, workforce bullying. 
2 The 2017 edition of the Annual Bullying Survey, a large on-line non-random ‘snowball’ survey of young people 
in secondary schools and colleges across the UK, records 54% of all respondents had been bullied at some point 
in their lives. According to this survey, one-third of all victims experience social anxiety, one-third experience 
depression, and a quarter of the victims had suicidal thoughts. 
3 Usually in three or four relatively narrow subjects that were selected at age 16 and studied over a two-year period 
in senior high school. The grade results from these examinations are used as the primary admission criterion by 
universities and are often collapsed to a single A-level points score for this purpose.  
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reductions in bullying incidence.4  This work provides estimates of the potential benefits of 

bullying reduction to put alongside the costs of such policies. Moreover, we highlight the 

differences in the effects by bullying type - evidence that may support a redistribution of 

resources towards tackling particularly harmful types.  

We regard our primary contributions to be twofold: we address both the endogeneity 

arising from both selection on unobservables and potential measurement error in the various 

forms of victimisation that are self-reported in the data. We confront the potential endogeneity 

problem by adjusting for key determinants of both bullying and child outcomes, via our rich 

data on both survey and administrative data. This is complemented by a comprehensive range 

of sensitivity analyses: falsification/placebo tests, and an assessment of the robustness of 

effects to specific deviations from the conditional independence assumption. To handle 

potential measurement error in the child’s self-reports of bullying victimisation frequency, we 

use the detailed parental cross-reports of bullying. Both youths and parents answered whether 

the individual was a victim of each of five forms of bullying in the last 12 months. Moreover, 

both the child and the main parent are asked about the frequency of victimisation. We use the 

parental cross-reports of bullying as an instrumental variable to resolve potential measurement 

error arising from self-reported bullying (an approach which has a long history, in, for example, 

analyses of twins).5 Here our IV estimates rely on the identification assumption that cross-

reported bullying at ages 14-16 does not affect own outcomes at 25 except through its 

correlation with self-reported bullying at 14-16. As usual, it is not possible to test this 

instrument validity assumption but we do conduct a number of robustness checks.  

Secondly, we examine the heterogeneous effects of varying types and intensities of 

bullying. Previous literature has typically relied on a simple binary treatment as a measure of 

bullying victimisation, and we build on this by using more detailed treatments. To do this, we 

first use factor analysis to create a summary variable capturing the richness of the variation in 

the type and frequency data; and second, we construct a multi-valued categorical treatment, 

which allows the effects of bullying to differ by type and intensity.  In terms of estimation, we 

use least squares to adjust for observable factors, to reduce the potential confounding role of 

                                                        
4  For example, the influential Olweus Bullying Prevention Program aims to provide structured classroom 
discussions to discourage bullying and to reward helpful behavior, and has been positively evaluated, See Olweus 
(2013) for England. For Norway, the USA, and elsewhere see 
http://www.violencepreventionworks.org/public/olweus_history.page.  
5 See Ashenfelter and Rouse (1998). Light and Flores-Lagunes (2006) explores the use of cross-reports in the 
context of non-classical measurement error. Bingley and Martinello (2017) appears to be the only validation study 
of self-reports that considers the case where the cross-report is also measured with error. 

http://www.violencepreventionworks.org/public/olweus_history.page
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selection on unobserved variables and extend this to linear IV to incorporate our parental cross-

report instrument. Our motivation in employing IV is to address potential measurement error 

in the self-reported bullying measures. We also use matching and weighting methods to reduce 

any effects of functional form assumptions - employing propensity score matching (PSM) 

where we consider a single discrete treatment, and inverse probability weighted regression 

analysis (IPWRA) where we consider multiple treatments.  The IPWRA analysis of treatments 

also facilitates the estimation of the effects of different types and intensities.  The least squares, 

matching and weighting methods also avoid the local treatment effect heterogeneity, which 

arises in many IV settings. In our setting, we have data on many of the determinants of bullying 

identified in the previous literature, and we build a credible case for a selection on observed 

variables assumption.  However, we recognise that bias from unobserved variable may remain 

a concern, and we examine the potential for unobserved variables to affect the estimates using 

recently developed tests that consider both the stability of the coefficient(s) of interest in the 

face of increasing the set of control variables, and the change in R2 across specifications (see 

Oster, 2017; Krauth, 2016). In the context of matching, we use a similar test due to Nanninci 

(2007) and Ichino et al. (2008).  

We report a mosaic of results reflecting the range of possible definitions of the 

treatments, estimation methods, and control variables. Together, the results suggest that there 

are important long run effects of bullying victimisation—stronger than simple correlations 

analysis would suggest.  

The rest of the paper is organized as follows. Section 2 describes the education system 

and the treatment of bullying. Section 3 briefly focusses on the key papers in the subset of 

literature that also attempt to provide causal estimates. Section 4 describes the data and the 

construction of the bullying intensity measure. Section 5 discusses the estimation 

methodologies. Section 6 presents the main results and our evaluation of them. Finally, Section 

7 offers some reservations, concluding comments, and suggestions for further work.   

2.        Educational Context  

Compulsory schooling in England starts at age four to five: children are expected to be 

attending full-time schooling at the age of five and are admitted each September to a “Primary” 

school before they reach that age.  At age 11 (Year Six) there is usually a transition to 

“secondary” school for a further five years of study, although in some areas there is an 

intermediate stage of schooling provided by “middle schools” that cover 11 to 13.  The end of 
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compulsory schooling is now somewhat blurred with children being expected to continue in 

school (usually in secondary schools from 16 to 18 often in the same location/campus as earlier 

schooling occurred, but sometimes in a “Sixth Form” college that admits children from nearby 

secondary schools for further study). Further Education colleges offer an alternative route to 

vocational training up to age 18; and all those in work from age 16 are expected to combine 

this with at least 20 hours of training per week that may be based in a FE college or in the 

workplace (Harmon, 2017).  There is often an element of selection by ability, based on earlier 

attainment, in admission to post-compulsory schools and sixth form colleges.    

There is a common curriculum across almost all English schools which is organized 

into ‘Key Stages’ with KS1 being up to age seven, KS2 being from ages eight to 10, KS3 being 

ages 11-13, and KS4 being ages 14-16.  There are low stakes tests at the end of each KS1-3. 

At the end of KS4 at the age 16, students take the high-stakes General Certificate of Secondary 

Education examinations (GCSEs). Students are usually examined in between five and ten 

subjects, and usually need to attain passing grades (A, B, C) in at least five of them, including 

Mathematics and English, in order to be tracked into further academic study in senior high 

school. After their GCSEs, students may decide to pursue further studies from age 16 to 18, 

typically in just three or four subjects for study at Advanced (A) level, depending on their 

academic preferences and intentions toward higher education. Higher Education (HE) 

admission is driven largely by A-level results that are graded A to E and grades are often 

converted into a cardinal scale by assigning points to grades. 

 The overwhelming majority of children attend publicly-funded secondary schools 

which admit children based on parental preferences and ration places at the margin, usually 

according to proximity, if capacity constraints bind. These include “community” schools that 

are managed by their Local Education Authorities, although that funding is provided under 

complex arrangements that involve central and local governments—and these arrangements 

are currently evolving into a national funding formula which allows for high need schools. 

Approximately 6% of children attend private schools, which usually have charitable status and 

operate on a not-for-profit basis. They can admit by ability and can charge fees.  Home 

schooling is rare in England (current estimates suggest less than 0.5%), whilst a small 

proportion of secondary school children (less than 5%) attend academically selective publicly-

funded (Grammar) schooling (a reduction from around 20% of much earlier cohorts—see 

Harmon and Walker, 2000). There are also publicly-funded schools that use religious 

background as an admission requirement. Finally, there are an increasing number other 
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publicly-funded schools, known as Free Schools and Academies, that are similar to US Charter 

Schools in having a degree of autonomy from local government, are funded largely from 

central government, but are different in that both types operate on a non-profit basis.6  For a 

broad discussion of the issues of school choice and type see Burgess et al. (2015).     

In the UK, the policy approach to bullying has not been prescriptive.  A range of 

resources are made available for the school leadership, allowing the school to choose the most 

appropriate as opposed to the more formal processes seen in other countries. Thompson and 

Smith (2010) provide a detailed overview with selection of case study schools that showed 

good practice in their anti-bullying work. Among the successful practices in the UK, the 

authors listed some proactive, peer support (peer listening and buddy schemes from transition; 

peer mediators trained in restorative approaches and play grounders), Head Teacher/School 

Principal ‘open door’ policy for parents and children, positive play sessions and safety haven 

designated spaces, home visits, reactive and restorative strategies (see Thompson and Smith 

(2010) and Smith and Thompson (2014) for an overview).  The Department of Education (DfE) 

has, from 2014, required schools to implement an effective anti-bullying strategy by adopting 

anti-bullying policies with clear definitions and procedures that are communicated to the whole 

school community (see Department of Education, 2017). 

 In addition to investigating educational achievement at school, we also consider the 

effects on longer term outcomes – at HE and in work. HE is usually pursued from age 18 at 

over 150 Higher Education Institutions (HEIs), some very small and specialised, which are 

collectively referred to as universities. Higher education participation rates are over 40% of the 

cohort and this has grown dramatically in the last three decades. Course fees have been 

dramatically increased (and public funding almost eliminated) since 2010 but there is now a 

comprehensive, sophisticated, and highly subsidized, student loan program that supports 

access, especially for low parental income students. Take-up of these loans is high and 

repayments are income contingent with the balance after 30 years being written off.  As a result, 

demand for university is relatively inelastic to price, and there is little evidence that fees have 

resulted in any fall in participation—either overall or for low SES students (see Murphy et al, 

2017).   Dropping-out is relatively scarce (around 8% across the sector). Although England is 

                                                        
6 Free Schools and often belong to chains of similarly branded schools and are effectively new entrants to the 
sector. Many former community schools have converted to gain Academy status. Many have a faith focus to them. 
Academy status was originally given to failing secondary schools, in an attempt to turn them around, but this 
status has been increasingly given to successful secondary schools who are often then required to assist in the 
management and operations of nearby weaker schools. 



 6 

geographically small, and so proximity to a university is much higher than in most other 

countries, the majority of students move away from their parental homes to study HE, and most 

of those that do will form (or join) households elsewhere when they graduate and start work. 

Finally, with respect to HE attainment, HEIs in England, (and Wales and Northern Ireland) 

offer undergraduate courses that are typically 3 years duration, studied mostly on a full-time 

basis and mostly straight from senior high school. Courses are usually specialized where a 

single narrow major is often pursued exclusively. Unlike the US, UK undergraduate 

professional courses such as law, medicine, and management are available across most HEIs. 

3.        Existing Bullying Literature  

Bullying has been recognised as a major public health problem in developed countries (Klomek 

et al., 2010). OECD (2017) contains a brief comparison of PISA science scores across countries 

by the prevalence of bullying across schools7. Surprisingly the effect on scores in Britain, 

controlling for school fixed effects, is ranked amongst Scandinavian countries and is far below 

most Wester European countries. Thus, our results here may have even greater relevance 

elsewhere in the world. 

There are many papers that address bullying, but we do not conduct a broad review of 

qualitative or non-causal studies and focus mostly on the very small literature that purport to 

attempt to estimate causal effects.  In Table 1 we attempt to interpret the effect sizes from these 

studies in a comparable way. Reviews of the work on bullying in the education and 

psychological literature can be found for example, in Sharp (1995), Ladd et al. (2017), Bond 

et al. (2001), Due et al. (2005), Arseneault et al. (2010), Ford et al., (2017), Woods and Wolke 

(2004). Victims of frequent bullying have reported a range of psychological, psychosomatic 

and behavior problems including anxiety and depression, low self-esteem, mental health 

problems, sleeping difficulties, sadness, and frequent pain.  

There is a relative paucity of economics research on bullying. The most relevant study 

to this work is Eriksen et al. (2014) which uses large surveys of Danish parents and teachers 

that record bullying prevalence and severity and combines this with outcomes from Danish 

                                                        
7 Little comparative work across countries about school bullying and its effects exists. Apart from OECD (2017), 
Due et al (2005) applied the same survey instrument to 123,227 students (age 11, 13 and 15) from a nationally 
representative sample of schools in 28 European and North American countries in 1997–98. There was widespread 
agreement across all countries that the health effects were negative and serious. Ammermueller (2012) uses a 
dataset of all students from classes in particular grades in randomly selected schools in the TIMMS project from 
11 European countries. The author studies the effect of personally experiencing being physically hurt or 
experiencing theft at school and so is focused on severe bullying.   
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administrative data on 9th grade (at age 16 in Denmark) based on tests in language and 

mathematics skills. Some 27% of the estimation sample record being bullied (to any extent), 

with 20% of those bullied reporting severe bullying. They estimate the relationship between 

bullying and future outcomes through an identification strategy based on classroom peer 

effects, assuming that the proportion of children whose parents had criminal backgrounds 

changes other life outcomes only through their effect on bullying by other children.8   

The authors report an OLS estimate of -0.14 of a standard deviation of the grade point 

average (GPA) from bullying but find that bullied children have very much lower academic 

achievement in 9th grade in their IV results, although these results are noisy. Their results are 

robust to exclusion of individuals with no classmate parents convicted of crimes (13%) but not 

robust to excluding individuals with more than half of classmate parents convicted of crimes 

(7%). However, the authors do not provide any supporting tests for their identification 

assumption neither do they discuss the relevance and validity of their instrument. Instrument 

validity is key in this work - it seems likely that having children from extremely challenging 

backgrounds in the classroom would have an impact on other children in a variety of ways, and 

not just through a bullying channel.  Their negative effects of bullying are even larger when 

they use teacher reported bullying than with parent reported bullying.  It seems likely that these 

two variables are correlated with the severity of the (unrecorded) actual bullying experienced 

by the child in different ways. Parents are probably more likely to get to know bullying because 

of changes in the behavior of their child - for example, making them more reluctant to attend 

school. In contrast, teachers are more likely to observe minor forms of bullying, as well as 

major ones. 

Ponzo (2013) uses Italian data from the 2017 Trends in International Mathematics and 

Science Study (TIMMS) and the 2016 Progress in International Reading Literacy Study 

(PIRLS) programs. They use both OLS estimation and a Propensity Score Matching (PSM) 

analysis to model the probability of being bullied. Being bullied is defined as having a positive 

response to any question about experiences of each type of bullying behavior—so this is a very 

low threshold. In the OLS analysis, the author finds that bullying has bigger adverse effects on 

numeracy at age 13 than at age seven, while there is a similarly large negative effect of bullying 

on literacy using the age seven PIRLS data. The author also explores the effects of a count of 

                                                        
8 However, Carrell and Hoekstra (2010) show that troubled children have a direct negative spillover effect and 
significantly decrease the reading and math test scores of their peers. 
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different forms of bullying as an intensity measure and finds larger negative effects on 

numeracy.   

Oliveira et al (2018) also uses PSM estimation applied to a sample of almost 30,000 

children around age 11 in the Brazilian city of Recife in 2013 to measure the effect of bullying 

on numeracy test performance. Two definitions of bullying are used—‘definitely bullied’ or 

‘maybe bullied’ – in their descriptive analysis, however the estimates make no distinction 

between the two definitions. Their results suggest that bullying has a negative impact on test 

scores of around 0.5 of a standard deviation. Black, younger and students with high BMI are 

more likely to report being bullied.  

Brown and Taylor (2008) use the much earlier National Child Development Study 

(NCDS) cohort of children born in a particular week in March 1958. It has the advantage that 

it records long-term outcomes and some, relatively crude, information on the bullies. The 

strength of this early contribution to the economics literature on bullying is that it uses a high 

quality and large cohort study that follows children through school and long into the labour 

market. Being bullied (at 7 and 11) is defined only from a maternal cross-report, and only in 

quite broad classifications (none, sometimes, often). From these responses the authors 

construct two indices to measure the extent of bulling at ages seven and 11. However, the 

authors do not account for the downward bias due to measurement error or the (likely, upward) 

bias due to the possibility of the existence of reverse causality in their estimates.  They find 

that being bullied at school increases the likelihood of failing high school exams by 1.7 

percentage points, while a one-point change in their bullying index at age 7 (or 11) decreases 

earnings by approximately 3.1 (or 2.8) percentage points.  

Vignoles and Meschi (2010) use LSYPE (but only up to age 16 outcomes) in their 

analysis of the effect of bullying educational attainment at 16. They use OLS estimation and 

rely on lagged, rather than current, bullying (a count of the number of types of bullying reported 

by the main parent) and control for lagged outcomes, and a rich set of other controls. However, 

some controls are likely to be “bad” controls (absences, for example). Moreover, the bullying 

measure is a count of the number of types cross- reported by the parent and so treats violence 

as equivalent to name-calling. Finally, lagged cross-reported bullying is likely to be a very poor 

measure of current actual bullying so attenuation due to measurement error is likely to be large. 

Sarzosa and Urzua (2015) use a longitudinal survey of 14-18 years olds with matched 

administrative education data from South Korea, much like our LSYPE data, to identify the 
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determinants of being bullied at age 15 on subsequent mental and physical health, and risky 

behaviors measured at age of 18 and older. The authors use a wide range of outcomes - 

depression, smoking, drinking, college attendance, life satisfaction, physical and mental health, 

and stress. They use a structural model of endogenous bullying and counterfactual outcomes, 

where latent cognitive and non-cognitive skills are used as a source of unobserved 

heterogeneity. To facilitate identification, they use a feature of the Korean schooling system - 

random allocation of students to classrooms - as a source of exogenous variation affecting the 

probability of being victimized.   They introduce two additional variables into their system of 

structural equations - the proportion of peers that self-report as bullies in the class, and the 

proportion of peers in the classroom that come from a violent family.  The bullying definition 

refers to events where students have been severely teased, threatened, collectively harassed, 

severely beaten, or robbed. The bullying intensity or the impact of different types of bullying 

is not been explored in their model; neither do they have access to parental responses in 

bullying incidence. Sarzosa and Urzua (2015) show that non-cognitive skills reduce 

significantly the likelihood of being a victim of bullying. 



 10 

Table 1:  Summary of selected studies in existing literature   

Authors Data
Year Country/Sample Estimation 

Method 
Dependent 
Variable Main control variables Effect size* 

Brown and 
Taylor 
(2008) 

1958 Britain—data 
from 1958 
National Child 
Development 
Study (NCDS) 

Ordered 
probit; 
OLS; IV 

Education: 
number of GCSEs 
at 16; degree/none 
degree at age 23; 
wages at age 23, 
33 and 42 

Quadratic in maths and reading test scores, birth weight, body mass 
index, controls for number of schools attended, child physical 
characteristics, indicator for financial problems/unemployed parent, 
whether child is in care or attends special classes, personality, index of 
how frequently child prefers to spend time alone, whether child fights, 
and is upset by new situations. 

6%  to 25% lower prob 
of degree, diploma, O-
level, or no qual; 
2.5% lower wages 

Vignoles 
and Meschi 
(2010) 

2004-
2006 

LSYPE Value-
Added 
model; 
School FE, 
RE 

KS4 point score; 
Attitude to school 
at age 16; 
Bullying at age 16 

Gender, ethnicity, if English is the first language, if eligible for free 
school meals; if any Special Education Need is identified; number of 
unauthorised absences; all attitudinal and behavioural responses that are 
likely to influence both parental choice of schooling and pupils’ school 
engagement. 

- 

Ammermuel
ler (2012) 

1965, 
1969 
2003 

11 EU countries, 
data from 1958 
NCDS; 2003 
TIMMS 

School 
fixed 
effects 
model 

Reading at 11/16, 
maths/science at 
Grade 4/8; 
Highest education 
at 33; Earnings at 
33 

Gender, parents born abroad, social class of father, parent's interest, free 
meal, older/younger siblings, wears glasses, height, attractive look, 
twitches, BMI,BSACG score, teacher's initiative to discuss child, pupil-
teacher ratio, school type, dummies for streaming of school, school FE. 

Insignificant 18% in 
math test scores  

Ponzo 
(2013) 

2006-
2007 

Italian data from 
2006 PIRLS and 
2007 TIMSS 

OLS, PSM Reading, maths 
and science scores  
(Grade 4 & 8) 

Gender, age, native parent, parent's education, total school enrolment, 
number of books at home, computer possession, own room, study desk, 
economic situation of the family, residence & city size dummies, % of 
students from disadvantaged families. 

Around 22-23% in 
reading, maths and 
science 

Eriksen et al. 
(2014) 

2001 Denmark- 
administrative 
data 

OLS, IV—
using % of 
troubled 
home peers   

Grades in Match 
and Danish at age 
16 (Grade 9). 

Child controls: gender, birth weight, birth complications, # younger 
siblings, ethnicity, #moves, mental disorders, emergency ward visit, 
psychosocial factors, impaired hearing, wear glasses, cross-eyed; Parent 
controls: age at birth, smoking, education, income, managerial level, 
mental behaviour, antidepressant. heart medication; classroom FE. 

Insignificant IV 21% 
on GPA grades 

Oliveira et 
al. (2018) 

2013 Brazil, city of 
Recife; 6th grade 
students in public 
schools 

OLS, PSM Math test 
performance  
(Grade 6) 

Child controls: gender, age, race, BMI, non-cognitive skills, any 
reported disease; Parental Controls: family per capita income, higher 
education, high school dummies, presence of those responsible for the 
student; Teacher Controls: gender, age, experience; School controls: 
class size, drop-out levels; absence, and proportion of girls per class; 

16%-17% in math test 
score 

Delprato et 
al.(2017) 

2013 15 Latin 
American 
countries  

OLS. PSM Maths and 
reading test scores  

Age, gender, whether repeated a grade, study conditions, family, school 
(school type, infrastructure) and teacher characteristic  

Around 10% in maths 
and 13% in reading  

Sarzosa and 
Urzua 
(2015) 

2003 S. Korea KYP-
JHSP longitudinal 
survey. 

LIML 
structural 
estimation 

Sickness, mental 
health, stress, and 
smoking at 18. 

Younger siblings, income per capita, both parents present, and father’s 
education levels. 

75% increase in 
incidence of sickness, 
50% in mental (ill) 
health, stress by 20% 

        Notes:  Effect size is expressed as a % of the SD of the dependent variable.
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Although bullying here is subjective and self-reported, and therefore likely to 

be subject to measurement error that might attenuate effects, the authors estimate that 

victims have significantly higher incidence of self-reported depression, sickness, 

mental health issues and stress: being bullied at 15 increases sickness and mental health 

issues by 0.75 and 0.5 of a standard deviation, respectively at 18. But, unlike our own 

results, the structural results suggest no effect on life satisfaction, and college 

enrollment. Another recent study by Delprato et al., (2017) examines the impact of 

bullying on learning and non-cognitive outcomes for sixth grade students in 15 Latin 

America countries using 2013 survey data, applying OLS and PSM methods. The study 

uses an overall measure of bullying and also two types of bullying, i.e. physical and 

psychological, however no intensity effects are documented. The authors report 

considerable variation in the prevalence of bullying across countries: physical bullying 

varies from 11% in Costa Rica to 26% in Peru, and psychological bullying between 

25% in Mexico to 40% in Argentina. For the whole sample of the 15 countries, 

matching estimates show that bullied students achieve lower scores in mathematics and 

reading (about 0.11 of a standard deviation in learning outcomes).  

Overall, there is little coherence in the existing literature both in the definition 

of bullying used, and in the interpretation of outcomes. Most studies use one or two 

definitions and there is little that we can learn about the importance of different types, 

frequencies, intensities, and repetitiveness of bullying on life outcomes.  The problem 

is confounded by the differences in the dependent variables used, which have mostly 

focused on educational, rather than on long run outcomes. 

4.  Data and Specification 

We use a large representative cohort study of English children, born in 1989/90, who 

have been followed from age 13/14 to age 25 years, at which point educational 

attainment has largely been completed and labour market outcomes are recorded. The 

data is known as Next Steps to the participants, and as the Longitudinal Study of Young 



 12 

People in England (LSYPE) to researchers 9,10  LSYPE covers a wide range of topics, 

apart from bullying, including family relationships, and attitudes toward school. It 

includes family, education, and labour market variables, and covers sensitive or 

challenging issues, such as risky behaviours, and personal relationships. LSYPE 

selected observations to be representative of the English population, but specific groups 

were oversampled - in particular, youths from low socioeconomic backgrounds and 

minorities (see Department of Education, 2010). More details can be found in Centre 

for Longitudinal Studies (2016) and Anders (2012). 

The survey started in 2004 when the young people were at the age of 13/14 (in 

school year 9). In the first wave of LSYPE, around 15,000 young people were 

interviewed across more than 700 high schools. The survey continuously followed these 

individuals for 7 years (age 14-21) and then re-interviewed them in Wave 8 at age 25. 

The non-response rate in the first wave was approximately 25%, and thereafter there 

was approximately 10% attrition in each subsequent annual wave. There was then a 

four-year break between Waves 7 (age 21) and 8 (age 25) – a period when a lot of new 

household formation occurs, which contributed to a further drop. There does not seem 

to have been any substantial attrition as children completed compulsory schooling or 

when the survey moved to mixed (a choice of either conventional survey home/school 

visits or new on-line completion) methods. The survey data are matched to an 

administrative register known as the National Pupil Database (NPD), which includes 

the LSYPE sample of that 1990 birth cohort and detailed histories of educational 

attainment.  

4.1  Outcomes 

We study the impact of bullying on the following outcomes—most of which we 

think of as being long-term ones, but we also include the most important proximate 

high-stakes educational outcomes:  

• Having 5+ GCSE or GNVQ passes, including Maths and English, which is an 
important criterion for advancing, after 16, along an academic track (“5+ GCSE”) 

                                                        
9 The Wave 8 survey sought consent from LSYPE participants to have further administrative data 
matched to LSYPE. We intend to return to this issue if such a longer-term follow-up of the LSYPE cohort 
becomes successful. 
10 The data is similar in structure to the earlier, shorter, and smaller, US National Longitudinal Study of 
Youths (NLSY) dataset that has been extensively used in other longitudinal research studies in other 
contexts and, in this bullying context, by Lam (2016).   
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• Having an A-level qualification, or other vocational “Level 3” qualification which 
attracts UCAS tariff points to contribute to university entrance (“Any A-levels”) 

• The sum of UCAS tariff points, based on the best three qualifications - these are 
most commonly A-levels, but can include other qualifications11 (“Best 3 A-level 
points”) 

• Receiving a university degree (“University degree”) 
• Natural log of weekly earnings conditional on being an employee (“Income”) 
• Unemployment, defined as not being and employee or self-employed, and so 

includes not in the labour force (“Unemployed”) 
• The General Health Questionnaire, measuring mental ill-health by a count of 

conditions from 0 to 12 (“Mental health”) 
 

4.2 Bullying Data 

Our bullying data is unusually comprehensive because it consists of five types, 

seven frequencies (including none) and three waves of data, providing a large number 

of possible treatments.  The data asks students (and the main parent) whether the child 

was a victim of bullying in the last 12 months. In particular, in each of the first three 

Waves of LSYPE (age 14-16), young people were asked whether they had experienced 

any of five forms of bullying in the last year:  

• Upset by name-calling, including text or email (N);  
• Excluded from a group of friends (Social exclusion, S);  
• Made to hand over money or possessions (E, for extortion);  
• Threatened with violence (T); 
• Experienced actual violence. (V) 
 
In addition to type of bullying, the data contains information on frequency: “every day”; 

“a few times a week”; “once or twice a week”; “once every two weeks”; “once a 

month”; and “less often than this”.12 

However, estimating close to 100 treatment effects on a dataset with a relatively 

small sample is unlikely to yield precise estimates. We therefore examine appropriate 

ways of creating summary measures that seem acceptable to the data and create three 

different types of bullying treatment variables. In preliminary OLS estimation, 

available on request, we use nested testing to aggregate types and intensities to achieve 

a statistically acceptable specification that would be sufficiently parsimonious to allow 

                                                        
11 The best three A-level qualifications are commonly used as the basis of admission by most UK HEIs. 
See: https://www.ucas.com/sites/default/files/2015-uk-qualifications.pdf . 
12 A not insubstantial group indicate the response “it varies” (n=885/7,569), and we set their frequency 
to missing in the reported results. However, in further analysis that is available on request, we have also 
explored alternative imputations which do not change the results.   

https://www.ucas.com/sites/default/files/2015-uk-qualifications.pdf
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estimation using a number of methods.  The first treatment is a binary variable equal to 

one if a child has experienced any bullying across the three waves, and zero otherwise. 

The overwhelming majority of the existing quantitative literature uses just one variable 

to define bullying, and this treatment provides a baseline specification that is 

comparable with previous studies. Second, we create a richer variable, using factor 

analysis, which combines information on type and frequency of bullying over the three 

waves. Finally, we create a multi-valued categorical variable to capture potential 

heterogeneity in treatment effects. The rationale behind these variables is as follows. 

We start by imposing cardinal interpretations to the bullying frequency reports. That is, 

we define frequency not as an indicator for each level, but as a number corresponding 

to the level. Assuming 200 school days in a year, we make the following imputations: 

• “every day” = 200 instances per annum, 
•  “a few times a week” = 100 instances,  
• “once or twice” = 60 instances,  
• “once every two weeks” = 20 instances,  
• “once a month” = 10,  
• “less often than this” = 2 
 

Rather than impose constraints on the raw data to generate more parsimonious 

specifications, we first take a data-driven approach using (exploratory) factor 

analysis.13 We conduct the factor analysis on the frequency of bullying variables, which 

are distinct by type and wave. We find evidence of just one common factor which we 

interpret as a measure of cumulative bullying intensity.14  This score is standardized to 

have a mean of zero and a standard deviation of one, which allows us to interpret 

subsequent results in terms of a standard deviation of the bullying intensity. This 

approach extracts the variation available by type, frequency and wave in a data-driven, 

pragmatic way. However, it remains restrictive by imposing common effects by 

bullying type, intensity level and wave.   

The third variable we create aims to allow different effects by type and intensity 

of bullying. We first reduce the number of treatments by collapsing the number of types 

                                                        
13 Factor analysis is commonly used when using data sets with large numbers of observed variables that 
are thought to reflect a smaller number of underlying latent variables.  
14 These are found using standard procedures according to which only factors with eigenvalues greater 
than or equal to one should be retained. See Fiorini and Keane (2014) for a similar application. The first 
factor explains 73% of the variance. We tried oblique rotation techniques to allow the factors to be 
correlated but the rotation did not affect the estimates.  
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to two, by combining the three types that relate to violence (actual violence, threatened 

violence, and demanding money or belongings under duress) and collapsing the two 

non-violent types (name calling and social exclusion) into one. This is largely a 

practical matter to preserve cell sizes. We justify this aggregation considering that some 

types, e.g., extortion, have a very low participation rate so the data would be unlikely 

to have the power to detect small effects on outcomes, and the variables in these 

grouping are naturally correlated: extortion usually occurs because of some implied 

threat of violence or actual violence. 

To reveal heterogeneity in the treatment, by type and intensity, we begin by 

summing across waves for each of the two types separately, to produce a cumulative 

sum of bullying instances (this could also be achieved by imposing the same coefficient 

on each wave’s frequency variable for each type separately). This restriction does not 

allow heterogeneous effects by the timing of bullying, but rather measures the 

cumulative effect of being bullied. 15 After collapsing to two types, we create two 

continuous variables by summing the total instances of violent and non-violent bullying 

instances across the three waves. For example, because for each type there are a 

maximum of 200 instances in each wave, the maximum number of non-violent 

instances across the three waves would be 1200.  

 To capture the heterogeneity in the pattern of bullying, we create a multi-valued 

treatment variable summarising the violent and non-violent frequency variables. We 

create a variable which takes on nine values indicating each combination of: violent, 

non-violent, no or little bullying, moderate bullying and high bullying. No or little 

bullying is defined as a frequency of zero days, or the lowest frequency of two days. 

This means this lowest category is 0 to 4 days for non-violent bullying (2 days 

multiplied by 2 types) and 0-6 days for violent (maximum of 2 days multiplied by 3 

types). High bullying is defined as being in the top quartile of the bullying frequency 

distribution: experiencing 100 days or more of bullying in a school year. Moderate 

bullying is the remaining group. Table 2 summarises the nature of this variable. 

  

                                                        
15 Recent research by Chrystanthou and Vasilakis (2018) explores the determinants of bullying and the 
role of family support in three waves of the UK Understanding Society panel. 
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Table 2:  Nine categories of the multi-valued treatment 
  Non-violent 

  None Moderate High 

V
io

le
nt

 

None 
Reference group: 
no bullying of 
either type (72%) 

No violent bullying; 
moderate non-
violent (10%) 

No violent 
bullying; high 
non-violent (3%) 

Moderate 
Moderate violent 
bullying; no non-
violent (3%) 

Moderate violent 
bullying; Moderate 
non-violent (3%) 

Moderate violent 
bullying; high 
non-violent (2%) 

High 
High violent 
bullying; no non-
violent (1%) 

High violent 
bullying; Moderate 
non-violent (1%) 

High violent 
bullying; high 
non-violent (3%) 

Notes: Cell percentages will not add to 100% due to rounding.  

In summary, we have focused on three definitions of bullying – a binary 

variable indicating whether the pupil has been bullied, of any type or frequency, at any 

point over the three waves of data (and a corresponding variable based on the parent 

reports); a continuous variable constructed via a factor analysis of the frequency of 

each type of bullying in each wave (and a corresponding variable based on the parent 

reports); and a multi-valued discrete treatment for each combination of violent or non-

violent bullying type, and none, moderate of high cumulative frequency of occurrence 

over three waves.  

4.3 Summary statistics: 
 
The most general sample for analysis is restricted to cases who participated in Wave 8, 

to yield long term outcomes, and also participated in Wave 1 and have complete data 

on the most basic set of covariates we use (N=7,569).  As we add further covariates and 

consider outcomes from various sources in our linked administrative data, the sample 

reduces so we take the approach of including dummy variables that capture missing 

values wherever possible, to avoid discarding information. Testing for differences in 

key characteristics across the different estimation samples does not reveal significant 

differences.16 

 LSYPE contains survey weights, to adjust for the complex survey design (a 

function of ethnicity, area deprivation and school type, among other factors) and survey 

                                                        
16 Not shown, available by request. 
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drop-out (modelled as a function of observed characteristics in the data). We may wish 

to use the weights if we suspect they may be correlated with our treatment effects, i.e. 

that the survey design or survey drop-out may bias our results. In the main analyses, we 

do not use the weights, because they are not feasible to incorporate into all of our 

estimation methods (for instance, IPWRA). However, where we can we have also fitted 

the models with the survey weights, yielding negligible differences in our parameters 

estimates, such that we feel confident using the weights would not alter our findings 

more generally (possibly because we are controlling, or matching on, many of the 

variables which enter into the survey weights and survey design). 17 However, we do 

adjust the standard errors in all analyses for clustering by school, the Primary Sampling 

Unit of LSYPE.  

Summary statistics for the outcomes and the control variables are provided in 

Table 3.  These statistics are unweighted and should not be interpreted as population-

representative estimates. Some 45% of children are male; 69% self-report white as their 

ethnicity, 6% of all children report that English is not their first language; the KS2 and 

KS3 scores are average points scores from the National Pupil Database (NPD), and are 

recorded at age 10 and 13 respectively; and 16% of children live with just one of their 

biological parents. Parents were asked if their child was in their first ranked secondary 

school—which we include because a child might be more likely to be bullied and have 

lower achievement, irrespective of bullying, if the child has not been able to gain 

admission to her most favoured school. 82% are placed in their first-choice school.  The 

Index of Deprivation included in the analysis is the IDACI (income deprivation 

affecting children index), a subset of the Index of Multiple Deprivation, measuring the 

proportion of children aged 0 to 15 living in income deprived families, defined 

including people out of work, and people with low income (Department for 

Communities and Local Government, 2015). Locus of control captures individual 

beliefs about whether life events are mostly internally or externally determined (Rotter, 

1966). People with an external locus of control believe that they cannot have an impact 

on what happens in life, as events largely depend on circumstances beyond their 

control. On the other hand, individuals with internal locus of control generally believe 

that life events are mostly caused by their own decisions and behaviours. We measure 

                                                        
17 Not shown, but available by request. 
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locus of control using children’s responses to six questions (see the Appendix for 

details) and we use factor analysis to create a continuous index of locus of control. 

LSYPE includes four questions on working attitudes (see the Appendix for details) and 

we use factor analysis to create an index of work ethics from these.  

The parental education variables reflect the rapid expansion that had occurred 

in HE provision in the late 80’s and early 90’s so that 37% of the children have gained 

a HE degree compared to 25% for their mothers - the interviewed “main parent” is the 

parent most involved in the child’s schooling, and is almost exclusively the mother. We 

have a wide variety of outcomes.  The proportion attaining 5+ GCSE passes, 69%, 

comes from the NPD data and is matched into the LSYPE data.  Whether the individual 

took any A-levels (or equivalent “level 3” qualifications), 51% in Table 3; and the sum 

of the points of the best three subjects taken (excluding General Studies – a very broad 

Table 3:  Summary statistics for key variables 
   Mean SD N 

Male 0.45 0.50 7,569 
Child’s ethnic group    
White 0.69 0.46 7,569 
Asian 0.17 0.38 7,569 
Black 0.06 0.23 7,569 
Other ethnic 0.07 0.26 7,569 
English second language 0.06 0.24 7,569 
Index of area-deprivation 0.22 0.18 7,030 
KS2 average points score 27.43 3.92 6,945 
KS3 average points score 34.97 6.39 6,960 
Highest parental qualification   
Degree or HE 0.25 0.44 7,569 
A-level  0.14 0.34 7,569 
GCSE 0.26 0.44 7,569 
Low or no qualifications 0.30 0.46 7,569 
Age of main parent 43 6.0 7,503 
Parents separated 0.16 0.36 7,569 
At first choice school 0.82 0.39 7,569 
Locus of control 0.05 1.00 5,406 
Work ethic 0.13 0.96 6,204 
5+ GCSE 0.69 0.46 6,698 
Best 3 A-level points 2289 99.40 4,018 
A-levels 0.51 0.50 7,569 
University degree 0.37 0.48 7,569 
Income (weekly) 303.4 72.5 7,569 
Unemployed 0.10 0.31 7,569 
Mental health 2.30 3.12 7,234 
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subject that is sometimes taken as a fourth A-level subject) using the grade to points 

conversion scale prevalent at the time, is taken from wave 7. Earnings are recorded for 

the individual in wave 8 of LSYPE. Unemployed is defined to include those not in the 

labour force (i.e. the unemployed are all who are not self-employed or an employee). 

Mental health is measured using the General Health Questionnaire (GHQ) index, which 

is a count of up to 12 conditions where a higher score indicates poorer mental health. 

Table 4 reports means and standard deviations of key variables by bullying 

status: whether a child has never been bullied, has been bullied once, or has been bullied 

multiple times. Boys are slightly more likely to report being bullied than girls. White 

families are overrepresented among the repeated bullying category compared with other 

ethnicities. Children in sole parent families are statistically significantly more likely to 

face multiple instance of bullying compared with those in two-parent families. There 

appears to be little difference in propensity to be bullied by measures of socio-economic 

status, such as the area-based deprivation index (IDACI), or parental education level. 

This makes sense because a key determinant of being bullied is being different from 

those around you, rather than the levels of any particular variable. There are differences 

in outcomes by bullying status, especially mental health, unemployment, and income. 

Figures 1 and 2 give a sense of the distributions of the frequencies of bullying 

by type of bullying and wave (among those who report data on both type and frequency 

of bullying). Figures 1a and 1b shows the extensive margin of victimisation experience 

by type—that is, the proportion of girls and boys reporting (any frequency of) each type 

of bullying in each Wave. Victimisation falls across waves for each type, consistent 

with the existing literature. Comparing Figures 1a and 1b it is also clear that name-

calling and social exclusion are more prevalent for girls and violence more prevalent 

for boys. Figures 2a and 2b show the intensive margin of victimisation by type and 

wave—that is, the average numbers of days the young people report experiencing each 

type of bullying in each wave. Again, victimisation tends to fall over the waves and, 

conditional on having positive number of instances, boys tend to experience a higher 

number of instances, especially for violent types.  
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Table 4:  Differences in key variables by bullying status 

 Never 
bullied 

Bullied 
once 

p 
value 

Repeatedly 
bullied 

p 
value 

Male 0.44 0.47 0.04 0.42 0.17 
White 0.62 0.70 0.00 0.80 0.00 
Asian 0.23 0.17 0.00 0.09 0.00 
Black 0.07 0.06 0.49 0.04 0.00 
Other ethnic 0.08 0.07 0.06 0.07 0.20 
ESL 0.07 0.06 0.04 0.04 0.00 
Index of deprivation 0.23 0.22 0.51 0.20 0.00 
KS2 average points score 27.54 27.27 0.03 27.46 0.50 
KS3 average points score 35.23 34.62 0.00 34.95 0.18 
Parental qual = Degree/HE 0.24 0.25 0.43 0.28 0.00 
Parental qual = A-level 0.13 0.13 1.00 0.14 0.58 
Parental qual = GCSE 0.25 0.26 0.49 0.28 0.03 
Parental qual= Low/no qual 0.33 0.31 0.30 0.26 0.00 
Age of main parent 42.54 42.42 0.46 42.44 0.56 
Parents separated 0.14 0.16 0.07 0.18 0.00 
At first choice school 0.82 0.81 0.43 0.82 0.75 
Locus of control 0.12 0.02 0.00 -0.01 0.00 
Work ethic 0.21 0.08 0.00 0.08 0.00 
5+  GCSE 0.74 0.67 0.00 0.65 0.00 
Best 3 A-level points 232.31 227.57 0.22 225.04 0.06 
Any A-levels 0.53 0.48 0.00 0.53 0.92 
Has a degree 0.39 0.35 0.00 0.35 0.01 
ln(Income) 5.67 5.67 0.62 5.72 0.00 
Unemployed 0.09 0.11 0.00 0.12 0.00 
Mental health 1.74 2.44 0.00 2.92 0.00 
N 3,087 2,341  2,141  

 

Exploration of the degree of serial correlation in bullying across waves 

suggested that this was high, for all three main types. For this reason, we feel justified 

in thinking that frequencies for each type could be aggregated across waves—that is, it 

may not matter than a bullying instance occurred in Wave 1, what matters is that is the 

cumulative total of bullying experienced. Figure 3 compares the child and parent 

reports of experiencing bullying. Typically, the child reports show a higher prevalence 

of bullying. The reports from both child and parents follow a downward trend over the 

three waves reflecting the decrease in bullying as children mature. In the Appendix, we 

provide descriptive evidence to get a sense of the outcomes associated with each type 

and frequency of bullying in Appendix Figure 1.  
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Figure 1:  Bullying participation by wave and type  
  (a)  Girls     (b) Boys 

 
Figure 2:   Bullying days by wave and type 

(a) Girls     (b)  Boys 

 
Figure 3:  Self and Cross Reported Bullying by wave and gender 

   
Notes: These charts show the unweighted proportions of cohort members experiencing each type of 
bullying by survey wave (1,2,3) and gender. ‘Non-violent’ includes social exclusion and/or name calling, 
‘Violent’ includes threats of violence, actual violence and extortion.  
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We group the days of bullying instances into the three levels defined earlier 

(None, Low, High), and show, for each intensity group cell, the means for each of our 

outcomes. These figures show the expected pattern, that increasing bullying intensity 

is associated with worsening outcomes. This pattern is especially pronounced for 

unemployment and mental ill-health. The graphs also foreshadow non-linearities in the 

effects of bullying: moving from moderate to high bullying is associated with a larger 

drop in outcomes, compared with moving from no bullying to moderate bullying. This 

is an issue we return to in our modelling. 
 
5. Estimation 
We explore a range of empirical methods, which rely on different identification and 

estimation assumptions. We first consider OLS estimates, as a benchmark, then 

propensity score matching (PSM), instrumental variables (IV) and finally treatment 

effects with inverse-probability-weighted regression (IPWRA). 

5.1 OLS  analysis 

We begin by estimating the following simple linear relationship using OLS: 

𝑌𝑌𝑖𝑖ℎ = 𝐁𝐁𝑖𝑖ℎ′ 𝜷𝜷  + 𝐗𝐗𝑖𝑖ℎ′ 𝛄𝛄 + 𝜖𝜖ℎ +  𝜔𝜔𝑖𝑖ℎ      (1) 

where Yih represents one of the outcomes, observed at age 16, 18 or 25 years depending 

on the outcome in question, for individual i who attended high school h; Bih, represents 

the bullying treatment variable, for student i attending high school h; Xih is a vector of 

child characteristics (e.g. ethnicity, month of birth, etc), school characteristics (e.g. 

school type), and family characteristics (e.g. maternal education and marital status),  

and 𝜖𝜖ℎ is a school fixed effect while 𝜔𝜔𝑖𝑖ℎ captures unobservables that vary across i and 

h. The inclusion of the school fixed effects allows us to account for unobserved time-

invariant school characteristics, which may affect bullying and students’ outcomes at 

the same time—for example, the disciplinary regime at the school. Using school fixed 

effects in many of our models captures the idea that it is the relative characteristics of 

pupils, compared with one’s proximate peers, which are important for determining 

whether a child is bullied.  

In this specification the coefficients on our Bih indicators, β, are the parameters 

of interest. While the OLS estimator adjusts for observable factors, the resulting 

estimates do not necessarily warrant a causal interpretation. The plausibility of the 
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conditional independence assumption required for a causal interpretation depends on 

the relationship between the outcomes and the covariates Xi. As such, it has become 

common to explore the stability of the parameters of interest by varying the set of 

control variables Xi. In particular, Xi might include pre-treatment controls - specifically, 

KS2 scores that might reflect pre-treatment bullying in primary school. We use three 

different sets of covariates, each including school fixed effects:  

1. A parsimonious specification that includes only those variables that seem plausibly 
exogenous: gender, ethnicity, month of birth, Government Office Region (GOR) 
and English being a second language. 

2. An intermediate specification which also includes a set of controls which we think 
of as being predetermined in Wave 1 of the data (age 14): local area deprivation, 
parental information including age, education, health, income and marital status, 
low stakes test scores at age 10 (KS2), and whether the school was the parent’s first 
choice school. 

3. A general specification that also includes variables that are contemporaneous to the 
bullying treatment—locus of control, conscientiousness and Key Stage 3 average 
points score. These variables were measured contemporaneously with bullying and 
may potentially be bad controls.  

We examine the potential role of unobservable variables using recently 

developed tests that explore the stability of the coefficient(s) of interest in the face of 

increasing the set of control variables (see Oster, 2017, and Krauth, 2016, which have, 

in turn, been developed from Altonji et al., 2005).  We report the estimates of the 

parameter δ, developed in Oster (2017), that can be interpreted as the level of selection 

on unobserved variables, as a proportion of the level of selection on observed variables, 

required to drive our estimated treatment effect to zero. A higher (absolute) value of δ 

indicates that a high level of selection on unobserved variables would be required for 

our results to be completely explained by omitted variables bias. We use this estimate 

to guide the selection of an appropriate specification for the subsequent modelling.  

We also implement a number of falsification, or placebo, tests. We assess the 

effects of the binary bullying variable on variables that are either determined before 

bullying occurred or are measured contemporaneously but should not be affected by 

bullying. Therefore, we expect to not see any significant effects of bullying in this 

analysis, unless our observed effects of bullying are driven by confoundedness. As 

placebo tests, we look at: the effects of bullying on the share of pupils in the school 

gaining 5+ GCSEs in 2001 (the first wave in the estimation sample is 2004), the 
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(current) IDACI index of deprivation of the child’s address, the share of White children 

in the young person’s school (in 2004), and the average Key Stage 2 points from the 

pupil’s primary school as measured in 2001.  

5.2 PSM analysis 

We complement least squares estimation with propensity score matching (PSM). 

Matching offers a number of advantages compared with OLS: increased similarity 

(balance) in the distribution of covariates between the treated and control group, 

explicit consideration of the degree of overlap, and a reduced reliance on a linear 

functional form. The primary approach we use is kernel propensity score matching, 

with a Gaussian kernel. We complement this with a number of alternative estimation 

methods, to ensure our results are not an artefact of one particular approach: nearest 

neighbour (NN) propensity score matching, and multivariate distance matching on the 

Mahalanobis distance (MDM).  For the NN and MDM matching, we also employ a bias 

adjustment (OLS on the matched sample) to reduce any remaining imbalance in the 

matched sample. We report a histogram showing the resultant overlap between treated 

and control units, and a plot summarising the balance statistics. 

To evaluate the sensitivity of the estimates to confounding, we employ the 

sensitivity analysis developed in (Nannicini, 2007; Ichino et al., 2008) and applied in 

other applications in labour economics such as Borra et al. (2012). This sensitivity 

analysis simulates the effects of a potential binary confounder on the average treatment 

effect on the treated. This method is similar in concept to many other sensitivity 

analyses in the statistics and econometrics literature who also assess the sensitivity to 

unobserved confounding (for example, Oster 2017). One advantage of this specific 

approach is that is does not require a parametric outcome model, making it suitable to 

use in a matching context 

The idea is that we may suspect that the conditional independence assumption 

may not hold, given the covariates we observe. However, we suggest that conditional 

on an omitted variable, denoted U, the assumption would now plausibly hold. Matching 

on U in addition to the vector X would allow us to obtain a consistent estimate of the 

ATET.  By specifying the joint distribution of U, the binary treatment (denoted B) and 

outcome (denoted Y), we can compute the “unbiased” ATT, which accounts for the 

confounding effects of U. We can compare this to our original, potentially “biased'' 
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estimate, which doesn't adjust for U, to assess the difference made by accounting for 

the unobserved covariate. 

To operationalise the method, one needs to specify the distribution of a 

hypothesised U, in relation to B and Y. Equation 2 highlights the maintained simplifying 

assumption that U is binary and independent of X. After specifying 𝑝𝑝𝑖𝑖𝑖𝑖, the relevant 

value of U is assigned to each observation, depending on which category of i,j they are 

in, and U is included in the calculation of the ATET as an additional covariate. For a 

given set of parameters, the matching procedure is performed multiple times with 

varying draws of U, and the estimate of the ATET is the average over the estimate of 

the ATET in each simulation. The standard errors are calculated using Rubin's rules for 

computing standard errors across multiple datasets. 

𝑝𝑝𝑖𝑖𝑖𝑖 ≡ 𝑝𝑝𝑝𝑝(𝑈𝑈 = 1 |𝐵𝐵 = 𝑖𝑖,𝑌𝑌 = 𝑗𝑗) =  𝑝𝑝𝑝𝑝(𝑈𝑈 = 1 |𝐵𝐵 = 𝑖𝑖,𝑌𝑌 = 𝑗𝑗,𝐗𝐗)  (2) 

The first way we operationalise this is to pick U such that the unbiased effect 

would be zero, and then assess the substantive plausibility of such a confounder. A 

second way to operationalise this is to specify U to mimic the distribution of some 

observed confounder, which may represent a more plausible scenario. Therefore, in 

addition to a hypothetical U which drives the treatment effect to zero, we also look at 

the potential confounding effects of hypothesised confounders which have the same 

distribution as some variable that is observable. We choose three such variables to 

explore this: the “sole parent family” variable; the “English second language” variable; 

and a binary variable (which we call “outlier”) that indicates being in either the top or 

bottom decile of the Key Stage 2 distribution in their school (i.e., compared with being 

in the middle of the distribution as the base category). We choose these particular 

variables as it seems plausible that they may possibly affect both the probability of 

being bullied and the outcomes. 

To assess the economic plausibility of each confounder U, we report both the 

selection effect and the outcome effect (Nannicini, 2007; Ichino et al., 2008).18 The 

selection effect quantifies the degree to which the posited unobserved covariate 

increases selection into being bullied: specifically, the change in the odds of being 

bullied associated the binary confounder taking the value one compared with zero. The 

outcome effect quantifies the degree to which the posited unobserved covariate 

                                                        
18 See the Appendix for a specific definition of these quantities.  
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increases the average outcome: specifically, the change in the odds of a binary outcome 

associated with having the confounder taking the value one compared with zero. The 

idea is that if an unobservable must have implausibly large selection and outcome 

effects to materially change our results then this would provide evidence supporting the 

robustness of our results. 

The OLS and PSM analysis so far has employed a simple binary treatment. To 

improve on this simple treatment, we also consider a continuous treatment constructed 

using factor analysis on the frequency of each type of bullying in each wave. Beyond 

this data reduction approach we consider multiple treatments defined by the varying 

intensities and types of bullying. 

5.3 Instrumental Variable analysis 

To account for measurement error as a plausibly important source of endogeneity in the 

model, and for the possibility that the coefficients of interest could be attenuated 

because of this, we use an instrumental variable approach using parental cross-report 

of bullying as an instrument for self-reported bullying. Our identification strategy is 

based on cross-reported bullying types and overall frequency. The estimation model 

consists of a first stage model of bullying (defined as binary or continuous variable), as 

a function of maternal cross reported bullying, defined in the same way as the 

dependent variable. The exclusion restriction rests on the assumption that bullying 

reported by the main parent does not affect individual’s long-term outcomes directly. 

IV estimation uses a smaller sample, because they rely on the frequency report of both 

parents and children to be non-missing, in all waves, not just at the extensive margin. 

The estimated model has the following two-stages: 

𝐵𝐵𝑖𝑖ℎ = 𝐌𝐌𝐌𝐌𝐁𝐁𝑖𝑖ℎθ′ + 𝐗𝐗𝑖𝑖ℎ′ γ1 + 𝜗𝜗ℎ + 𝜀𝜀𝑖𝑖ℎ    (3) 

Y𝑖𝑖ℎ = 𝑩𝑩�𝑖𝑖ℎ𝛽𝛽′ + 𝐗𝐗𝑖𝑖ℎ′ γ2 + 𝜖𝜖ℎ + 𝜔𝜔𝑖𝑖ℎ 

where 𝐌𝐌𝐌𝐌𝐁𝐁𝑖𝑖ℎ is the cross-report by the main parent of child i in school h. 

One possible concern in this analysis is that parents who report bullying may be 

systematically different from those who do not report it, and that they may put some 

strategies in place in order to support their child and help her/him navigate through 

these difficult experiences. If these characteristics or strategies also affect long-term 

outcomes, our estimates could be biased. A similar argument has been used in other 
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educational production function examples. This kind of parental behaviour is more 

likely to be found among parents who are more involved in their children’s lives and 

possibly more able to support their children. We expect these parental characteristics 

to have a positive effect on children’s long-term outcomes, and therefore this is likely 

to make our OLS estimates more conservative. That is, we identify lower bounds.  

5.4 Treatment effects with IPWRA analysis 

We also examine the role of different types of bullying using inverse probability 

weighted regression adjustment (IPWRA) treatment effects estimation based on Imbens 

and Wooldridge (2009) and its implementation in Cattaneo et al. (2010).19  We use 

IPWRA to explore the effects of a multi-valued treatment taking nine values: each 

combination of no bullying, low bullying and high bullying frequency, for two types of 

bullying (violent and non-violent). 

Specifically, the probability of “treatment” (in this context, having a certain 

combination of violent/non-violent and low/high frequency bullying) is estimated using 

a multinomial logit specification. The inverse of these predicted probabilities are used 

as weights in a second-stage regression (Wooldridge, 2007; Wooldridge, 2010; and 

Imbens and Wooldridge, 2009). IPWRA re-weights the sample based on the inverse 

probability of treatment, and fits OLS regression on the reweighted sample.  The 

IPWRA estimator has the so-called “double robustness property” (Wooldridge, 2007 

and 2010) in that only one of the two equations in the model must be correctly specified 

to consistently estimate the parameters of interest. That is, estimates in the second stage 

(the outcome equations) are robust to misspecification of the first stage (the 

multinomial logit model of treatment propensities) provided that the second stage is 

correctly specified. Similarly, estimates from the first stage are robust to the second 

step provided the weighting is correctly specified. Nonetheless, estimation by 

IPWRA relies on the conditional-independence assumption in order to identify the 

effect of bullying on long term outcomes. If we had enough information on the 

observable differences between youths with and without the treatments, we can heavily 

weight treated observations that have similar observables to untreated individuals and 

obtain unbiased estimates of the causal relationship between bullying and long term 

                                                        
19 These estimates are calculated using the teffects iwpra routine in Stata (Stata Corp, 2017). 
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outcomes (Mendolia and Walker, 2015). Technically, this approach increases the 

similarity of the distribution of covariates in the treated and control groups via the 

reweighting, leading to reduced reliance on functional form of the OLS specification. 

6.  Results 

Table 5 shows the OLS results for the “Any bullying” measure, which is typically what 

the existing literature has measured. In the body of the text we report results only for 

boys and girls pooled (with a gender control included).20 The most straightforward 

specification of the treatment, that is common in the literature is the single treatment 

model defined as “Any bullying”.  OLS results are reported in Table 5 for short term 

effects on having 5+ GCSE passes at age 16, taking A-levels at age 18, and A-level 

score used as one factor determining university admission; intermediate outcomes 

associated with university (having a degree by age 25) and long run outcomes at age 25 

(log income, being unemployed, and the GHQ score).  

Specification 1 includes as covariates the child’s gender, ethnicity, month of 

birth, Government Office Region (GOR) and English being a second language, along 

with the school fixed effects. Adjusting for these basic controls, we observe large 

detrimental effects of experiencing bullying. The probability of gaining 5+ GCSE 

passes at age 16 is reduced by 6.3 percentage points (10% reduction from a mean of 

0.69). The probability of staying on in school to take a A-levels or an equivalent is 

reduced by 4.6 percentage points (9.0% reduction from a mean of .51), and the UCAS 

points gained from those qualifications are reduced by about 5 points (5% of a standard 

deviation). Turning to longer run outcomes, income at age 25 years is reduced by 2.3% 

(7 GBP per week reduction from a mean income of 303.4 in the sample). The 

probability of being unemployed increases by 3.5 percentage points (35% from a mean 

of 0.10). Perhaps most strikingly, the GHQ mental ill-health index increases by 0.97, a 

large effect size of about one third of a standard deviation.  

 Evidently, being bullied is strongly associated with deleterious outcomes, 

making comparison within schools, and controlling for a basic set of covariates. 

However, these effects may be driven, to some extent, by confounding. Specification 2 

aims to address this by adding a rich set of relevant controls, associated with both being 

                                                        
20 In the Appendix we present results for boys and girls separately – as a general rule we find that girls 
are more sensitive to bullying, however measured, than boys for virtually all outcomes. 
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bullied and child outcomes. Specification 2 adds: local area deprivation (IDACI), 

parental information, including parental age, education, health status (long term 

condition), income and sole parent status, average points score from Key Stage 2 (KS2), 

and whether the school was the parent’s first choice school. 

For the GCSE outcome, A-level participation, income at age 25 years, and 

university degree, this addition of relevant controls reduces the effects size by about 

half, and the effects remain statistically significant (aside from having a university 

degree). For example, the probability of gaining 5+ GCSE passes at age 16 is now  -

4% (reduced by 2.4 percentage points); the probability of staying on in school to take 

A-levels or equivalent is around -2.5% (reduced by 2 percentage points); the probability 

of having a university degree is reduced by 1 percentage point (not significant); and the 

effect on income at age 25 years is to reduce this by 1.0% (£3 per week reduction from 

a mean income of 303.4 in the sample). Other outcomes remain with a similar effect 

size: A-level points gained from those qualifications is reduced by about 6 points (6% 

of a SD), and again the GHQ mental ill-health index increases by 0.91, a robust large 

effect size of 29% of a standard deviation.  

Looking at the estimates of the δ parameter, these typically increase in absolute 

value, moving from Specification 1 to Specification 2, indicating that the level of 

selection on unobserved variables required to drive our treatment effects to zero is now 

higher in Specification 2. It is natural then to consider adding further controls to 

improve the credibility of the findings, which motivates Specification 3, which adds 

personality traits and further academic tests scores variables. Specifically, locus of 

control, work ethic, and Key Stage 3 average points score. However, these variables 

are measured contemporaneously with the bullying treatment, therefore it is not clear 

whether they are best suited as controls or mediators. Assessing the change in the δ 

estimate, this figure typically decreases moving from Specification 2 to Specification 

3, potentially suggesting that we have worsened the selection problem by controlling 

for these variables. Thus, we select Specification 2 as our preferred specification for 

the remaining analyses, and we explore the credibility of this in more detail with further 

sensitivity checks, beginning with a falsification exercise. A negative estimate of delta 

can be generated if the observables are positively correlated with the treatment, and the 

unobservables are negatively correlated with the treatment (Oster, 2017). 
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Table 5  OLS estimates of the effects of “Any bullying”.  

 
Dependent 
variable 
 

5+ GCSE Any A-levels Best 3 A-level 
points Ln(income) University 

degree Unemployed Mental health 

        
Specification 1        
β -0.0633*** -0.0457*** -4.927 -0.0225*** -0.0227* 0.0348*** 0.969*** 
se (0.0118) (0.0112) (3.412) (0.00429) (0.0118) (0.00726) (0.0751) 
N 6,698 7,569 4,018 7,569 7,569 7,569 7,234 
δ 0.48 -0.18 4.16 -0.49 0.05 0.86 2.00 
        
Specification 2        
β -0.0349*** -0.0249** -5.880* -0.00955*** -0.0109 0.0281*** 0.911*** 
se (0.00968) (0.0121) (3.509) (0.00344) (0.0126) (0.00744) (0.0816) 
N 6,133 6,413 3,671 6,413 6,413 6,413 6,162 
δ 0.67 0.20 29.6 -15.7 0.06 0.18 0.37 
        
Specification 3        
β -0.0141 0.00408 -4.237 -0.00390 0.00236 0.0159* 0.894*** 
se (0.0112) (0.0148) (3.904) (0.00428) (0.0148) (0.00906) (0.0977) 
N 4,269 4,436 2,649 4,436 4,436 4,436 4,282 
δ 0.35 -0.042 0.27 -2.18 -0.016 0.102 0.332 
        

Notes: Robust standard errors, clustered by school, in parentheses. *** p<0.01, ** p<0.05, * p<0. School fixed effects are included in all specifications. β=coefficient on bullying treatment; 
se(β) robust standard error of β; δ=estimate of delta parameter implemented in —psacalc- and developed in Oster (2017), which indicates how much selection on unobserved variables would 
be required to drive the beta estimate to zero, measured as proportional to the selection on observed variables. 
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Table 6:   IV estimates of the effects of “Any bullying” 

 

Dependent 
Variable: 5+ GCSE Any A-levels Best 3 A-level 

points Ln(income) University 
degree Unemployed Mental health 

        
Specification 1        
β -0.321*** -0.200*** -27.65*** -0.120*** -0.168*** 0.101*** 1.735*** 
(se) (0.0388) (0.0377) (10.45) (0.0151) (0.0347) (0.0224) (0.248) 
N  6,698 7,569 4,018 7,569 7,569 7,569 7,234 
        
Specification 2        
β -0.0920*** -0.0463 -17.69* -0.0374*** -0.0864** 0.0566** 1.768*** 
(se) (0.0313) (0.0375) (10.29) (0.0117) (0.0387) (0.0244) (0.278) 
N 6,133 6,413 3,671 6,413 6,413 6,413 6,162 
        
Specification 3        
β -0.0982*** -0.0103 -16.78 -0.0213 -0.0616 0.0727** 1.889*** 
(se) (0.0336) (0.0437) (11.55) (0.0136) (0.0452) (0.0296) (0.318) 
N 4,269 4,436 2,649 4,436 4,436 4,436 4,282 
        

Notes: Robust standard errors, clustered by school, in parentheses. *** p<0.01, ** p<0.05, * p<0.1GMM results were almost identical. 
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In Table 6 we report the results of IV estimation, with a binary treatment and 

binary instrument. We use parental reporting of any bullying as an instrument for child-

reported bullying. We are instrumenting to handle measurement error arising from mis-

reporting in the discrete subjective self-reports, and as expected, the effect size tend to 

be larger after using IV compared with the corresponding OLS results. In general, IV  

results confirm our OLS findings and show a substantial negative impact of bullying 

on all considered outcomes. The lower δ estimates in Specification 3 of Table 5, relative 

to Specification 2, suggest that we have added bad controls, worsening the selection 

problem. 

Table 7 presents results from an important falsification test. We show OLS 

estimates of the effects of being bullied on various outcomes, which we feel should not 

be greatly affected by our bullying treatment: the share of white pupils in the school, 

the pupil’s deprivation index, and historical information on school performance. 

Observing an effect on these outcomes would suggest we are conflating the bullying 

effects on long run outcomes with general omitted variable bias. Conditioning on the 

variables listed in Specification 2, we do not observe any significant effects on these 

outcomes, providing support for the veracity of our results and with the credibility of 

Specification 2 in controlling for the key determinants of bullying and outcomes.    

 
Table 7  OLS linear estimates of the effect of “any bullying” (a binary treatment 

variable) on predetermined variables (falsification tests) 

Outcomes: 
Share of White 
pupils at school 
(2004) 

IDACI index of 
deprivation 
(wave 2) 

% of pupils 5+ 
GCSEs in 2001 

Average KS 2 
points in 2001 

     
β 0.0902 0.00548 -0.179 0.989 
 (0.473) (0.00366) (0.459) (1.140) 
     
N 6,347 6,413 6,260 5,702 
     

Notes: This tables shows the OLS (linear regression) estimates of four outcomes, which are determined before the 
bullying variable is measured, on the binary variable “any bullying?”. Standard errors are in parentheses. The control 
variables used in the regressions are from Specification 2. For the school-constant outcomes (e.g., % white pupils), 
school fixed effects are omitted from the specification. Because these outcomes are taken from administrative 
sources, and some have fewer non-missing observations than in the main models.  
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Aside from the issues associated with identification, our estimates could also be 

driven by the functional form imposed in the OLS estimation. Therefore, we also 

investigate propensity score matching. In Table 8, the propensity score findings show 

strikingly similar pattern to those in Specification 1. This suggests that the Table 6 

results are not driven by the functional form of the OLS model.  

Table 9 reports on a sensitivity analysis to deviations from the conditional 

independence assumption in the propensity score matching (Nannicini, 2007; Ichino et 

al., 2008). We first consider the plausibility of a binary confounder that would drive 

our treatment effects to zero. Taking the first outcome in Table 9 as an example - 

gaining 5+ GCSE passes, we see there would need to be large outcome and selection 

effects to make this effect completely disappear. The binary confounder U would need 

to increase the odds of being bullied by a factor of at least 4.5 and decrease the odds 

of gaining 5+ GCSE passes by a factor of 0.2.  While this may be plausible, looking 

across the outcomes, the longer run effects are most robust (would require the most 

extreme confounder). For instance, for mental health, the binary confounder U would 

need to increase the odds of being bullied by a factor of at least 9 and decrease the odds 

of being in the top quartile of the GHQ distribution by a factor of 31. This type of 

extreme confounder seems an unlikely scenario.  

Table 8:  Propensity score estimates of the effects of “Any bullying”  
(a binary treatment variable) 

 ATT Std. 
error 

N 
(control) 

N 
(treated) 

Total N 

      
5+ GCSE -0.0710*** 0.0102 2,401 3,732 6,133 

Any A-levels? -0.0526*** 0.0112 2,526 3,887 6,413 

Best 3 A-level points -7.4607** 2.7570 1,549 2,122 3,671 

ln(Income) -0.0169*** 0.0046 2,526 3,887 6,413 

Has a degree -0.0219** 0.0121 2,526 3,887 6,413 

Unemployed  0.0354*** 0.0076 2,526 3,887 6,413 

Mental health  0.9597*** 0.0800 2,417 3,745 6,162 

      
Notes: Kernel matching estimates implemented using attk in Stata; ATT= average treatment effect on the treated; 
se, standard error (bootstrapped with 100 replications). *** p<0.01, ** p<0.05, * p<0.1. The covariates included in 
the propensity score model are from Specification 2. 
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To assess more realistic potential confounders, we assess the effects of 

simulated variables that mimic the distribution of relevant observed variables in our 

data, in relation to the treatment and outcome. The next three panels assess the effects 

of using each of our selected variables to be potential confounders in our data: being in 

a sole parent family, having English as a second language, and being in the top decile 

or bottom decile of the Key Stage 2 distribution on the child’s school. These variables 

were chosen as variables that may reflect perceived or actual differences from one’s 

classmates, which would shape both the propensity of being bullied and have direct 

effect on the outcome. While we adjust for school fixed effect in much our analyses, 

such that the data are in terms of deviations from the school averages, there may be 

further unobserved confounders based on “being different” which are not captured.   

Beginning with effects of the simulated unobserved confounder mimicking the 

distribution of the sole parent family variable, this would reduce the effect on the GCSE 

variable by about 3% i.e. (comparing row 1 with the equivalent row in column 1 of 

Table 9, -0.071 to 0.069), the A-level variable by 4%, and the income effect by about 

6%, but has negligible effects on the other treatment effects. Looking at the selection 

and outcome effects, these appear to more substantively plausible compared with the 

simulated confounder devised to fully eliminate the effects. The simulated unobserved 

confounder mimicking the distribution of English as a Second Language has little 

impact on the treatment effects, aside from reducing the effect on mental health by 

about 1%. Finally, we examine the simulated unobserved confounder mimicking the 

distribution of being in the tails of the prior ability distribution. This would reduce the 

effect on the GCSE variable by about 2% and has negligible effects on the other 

treatment effects. 

Our conclusion from this analysis is that, overall, scenarios emulating realistic 

levels of confounding could reduce our treatment effects by between 0%-6%, 

depending on which outcomes is considered. Therefore, it seems unlikely that our 

results could be entirely driven by selection. The type of confounder required for this 

to happen appears to be substantively implausible. That being said, the effects on longer 

run outcomes—mental health and unemployment—are the most robust, compared with 

the short run academic outcomes.  
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Table 10 looks at the effects of the continuous treatment (bullying factor), using 

OLS and Table 11 shows IV results, instrumenting with a parental cross-report. The 

unit of treatment is a one-standard deviation increase in the continuous bullying factor 

created using factor analysis. The pattern of findings is consistent with the binary 

treatment results, after now incorporating richer information from both the extensive 

and intensive margin of bullying. The IV results, while less precise, tend to be larger 

after instrumenting to handle measurement error, as we already noticed in the previous 

tables and as expected. In Web Appendix Table 4 and 5, we report the OLS and IV 

results separately by boys and girls, typically finding larger effects among girls - 

although the difference in effects is not statistically significant, and we do not comment 

further on gender differences.  

Finally, we explore the role of type and frequency together using treatment 

effects and IPWRA. The aim is, in contrast to the existing literature, to show the merit 

of viewing bullying as a multi-valued treatment problem.  Figure 4 summarises the 

treatment effects for the four long run outcomes: (a) university degree, (b) income, (c) 

unemployed, (d) mental health. The dots are our point estimates, while the lines 

represent the 95% confidence intervals. The figures for the remaining short-term 

outcomes are presented in Figure 5.  

Even with this minimal extension that considers just two types of bullying at 

three levels of intensity (none, low, high), we find systematic effects of both type and 

frequency using IPWRA. Especially for the longer run outcomes, it appears that much 

of the effects is driven through the most intense forms of bullying—high intensity, 

violent bullying. Other types and frequencies also have effects, especially for mental 

health where any combination of NV and V bullying, whether at high or low intensity, 

statistically significant adverse effects – raising the mental ill-health count by between 

0.5 and 1.5 where the mean is 2.3.  The effects on income are large and negative (-4%) 

only for the relatively small proportion of the population who experience high intensity 

V bullying and either high or low NV bullying. The results in Figure 5 suggest that 

these income effects may stem from negative impacts of bullying combinations on the 

probability of attaining 5+ GCSEs or any A level. These results strongly reject the idea 

that a single treatment is sufficient to capture the complex effects of bullying. 
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Table 9:    Sensitivity analysis for propensity Score estimates of the effects of “Any bullying” (a binary treatment variable). 

 
Outcomes: 5+ 

GCSEs 
Any A-
levels 

Best 3 
A-level 
points 

Ln(Income) Unemployed Mental 
health 

       
ATT assuming unconfoundedness -0.071 -0.053 -7.470 -0.017 0.035 0.96 
       
With U chosen to make ATT ≈ 0 0.004 0.001 -0.014 -0.008 -0.007 0.004 

   Selection effect 4.460 2.942 3.541 1.714 3.109 9.015 
   Outcome effect 0.211 0.314 0.335 0.089 12.857 31.177 

ATT, U mimicking “Sole parent family” -0.069 -0.051 -7.433 -0.016 0.035 0.957 
   Selection effect 1.239 1.195 1.171 1.329 1.245 1.248 
   Outcome effect 0.610 0.617 0.768 0.318 1.441 1.110 

ATT, U mimicking “English second language” -0.070 -0.053 -7.383 -0.018 0.036 0.953 
   Selection effect 0.640 0.577 0.611 0.689 0.607 0.638 
   Outcome effect 0.970 0.893 1.119 0.037 1.817 0.694 

ATT, U mimicking “Outlier in school Key Stage 2 dist’n” -0.070 -0.053 -7.493 -0.017 0.035 0.959 
   Selection effect 1.095 1.109 1.043 1.149 1.117 1.139 
   Outcome effect 0.864 1.129 1.695 1.108 0.784 1.039 

       
N 6,133 6,413 3,671 6,413 6,413 6,162 

Notes: Kernel matching estimates, ATT= average treatment effect on the treated.
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Table 10:   OLS estimates of the effects of ‘bullying factor’  

Dependent 
Variable: 5+ GCSE Any A-levels Best 3 A-

level points 
Ln(income) University 

degree Unemployed Mental 
health 

        
Specification 1        
β -0.0489*** -0.0461*** -1.780 -0.0182*** -0.0276*** 0.0197*** 0.296*** 
se (0.00825) (0.00748) (2.930) (0.00332) (0.00635) (0.00596) (0.0488) 
N 4,861 4,890 3,053 4,890 4,890 4,890 4,704 
        
        
Specification 2        

β -0.0140** -0.0228*** -1.203 -0.00678** -0.0115* 0.0111* 0.297*** 
Se (0.00661) (0.00834) (2.947) (0.00267) (0.00688) (0.00581) (0.0530) 
N 4,450 4,464 2,780 4,464 4,464 4,464 4,307 
        

Notes: Robust standard errors, clustered by school, in parentheses. *** p<0.01, ** p<0.05, * p<0. β=coefficient on bullying treatment; se(β) 
robust standard error of β. 
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Table 11:   IV estimates of the effects of ‘bullying factor’  

 

 
 
 
 
 
  

Dependent 
Variable: 5+ GCSE Any A-levels Best 3 A-

level points 
Ln(income) University 

degree Unemployed Mental 
health 

        
Specification 1        
β -0.102*** -0.0946*** -21.84 -0.0521*** -0.0835*** 0.0429** 0.735*** 
se (0.0268) (0.0235) (15.02) (0.0121) (0.0209) (0.0180) (0.217) 
N 3,758 3,780 2,424 3,780 3,780 3,780 3,643 
        
Specification 2        

β -0.0287 -0.0497* -20.20 -0.0243*** -0.0561*** 0.0287 0.775*** 
se (0.0196) (0.0255) (14.63) (0.00893) (0.0212) (0.0192) (0.250) 
N 3,444 3,455 2,209 3,455 3,455 3,455 3,337 
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Figure 4  Estimated long term effects from IPWRA model  
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Figure 5  Estimated short term effects from IPWRA model  
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7.  Conclusion  

This paper investigates the effects of bullying in secondary school on later academic 

and labour market outcomes. We do this by exploiting a rich conditioning set of 

observables, using a range of estimation methods: OLS, matching, weighting and 

instrumental variables.  The data come from a large high quality cohort study in 

England, the LSYPE, confidentially linked with administrative data on education 

records. Our empirical findings show that school bullying has negative consequences 

for short run academic outcomes and persists to have adverse long-term effects—the 

strongest effects are on mental health, and we also find effects on unemployment and 

income measured at 25 years.  

 We conduct a comprehensive battery of sensitivity tests to explore our main 

identifying and estimation assumptions. The results of this indicate that it is very 

unlikely, indeed implausible, that our effects are entirely driven by selection on 

unobserved variables. A more credible interpretation of these results is that our effect 

sizes could potentially be reduced, but not eliminated, by unobserved selection, in some 

cases by up to 6%. Even in this scenario, the estimate effects remain large enough to be 

of substantive importance. The most robust effects are mental ill-health and 

unemployment. Being bullied exerts long run deleterious effects of children’s life 

outcomes. Based on our analyses, we feel confident that this finding is not an artefact 

of a particular estimation or identification assumption.  

The results have relevance for policy. Although schools have flexibility in how 

they deal with bullying, all schools are expected to have a policy. In practice, schools 

tend to take a zero-tolerance approach to bullying. Our results suggest that low levels 

of non-violent bullying have modest effects, but higher intensity bullying has much 

larger effects. We also tentatively suggest that violent bullying has a greater effect than 

non-violent bullying. These findings suggest that the long run consequences of bullying 

should not be underestimated, and perhaps more policy should be targeted more heavily 

on the extreme cases of violent and intense cases.  
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APPENDIX 
 
Questions in LSYPE 

 
Locus of control 
 
I can pretty much decide what happens in my life 
If someone is not a success in life, it is usually his fault 
How well you get in this world is mostly a matter of luck 
Even if I do well at school, I will have a hard time 
People like me do not have much of a chance 
If you work hard at something, you will usually succeed 

 
Possible answers: Strongly agree, Agree, Disagree, Strongly disagree 
 
Work ethic  
 
Doing well at school means a lot to me 
At school, I work as hard as I can 
Working hard at school now will help me to get on later in life 
If you work hard at something, you will usually succeed 

 
Possible answers: Strongly agree, Agree, Disagree, Strongly disagree  
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Appendix Figure A1   Outcome means by type of bullying and level of bullying.  
a) 5+ GCSEs - Non-violent and violent 

 

 
b) Any A-levels - Non-violent and violent 

 

 
c) Best 3 A-level points- Non-violent and violent 
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Appendix Figure A2 contd.      Outcomes by type of bullying and level of bullying.  
d) Unemployed - Non-violent and violent 

 
e) Weekly income -  Non-violent and violent 

 
f) Mental health - Non-violent and violent 

 
g) University degree - Non-violent and violent 
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WEB APPENDIX 
 
Web Appendix Table 1:   Unweighted summary stats for bullying variables 

 Mean SD Unweighted 
N 

Parent report of type:    
Called names 0.30 0.46 6,885 

Excluded from groups 0.11 0.31 6,885 
Made to hand over money or items 0.01 0.12 6,885 

Threatened with violence 0.12 0.32 6,885 
Experienced violence 0.10 0.30 6,885 

    
Child report of type:    

Called names 0.30 0.46 7,102 
Excluded from groups 0.16 0.37 7,135 

Made to hand over money or items 0.03 0.18 7,297 
Threatened with violence 0.19 0.39 7,236 

Experienced violence 0.16 0.37 7,250 
    
Child report (factor) -0.07 0.82 4,890 
Parent report (factor) -0.09 0.76 4,971 
    

 
 
Web Appendix Figure 1:  Histogram showing common support and balance of the 

matched sample. All observations are on the common 
support.   
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Web Appendix Figure 2:   Plot summarizing the balance statistics comparing the 
    unmatched and matched sample (from –psgraph-) 
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Web Appendix Table 2:   Multivariate distance matching  
 

 ATT  std.err  N (control)  N (treated) Total N 
      
5+ GCSE -0.0452 0.0127 2,401 3,732 6,133 
Any A-levels? -0.0322 0.0153 2,526 3,887 6,413 
Best 3 A-level points -9.3701 3.9647 1,549 2,122 3,671 
      
ln(Income) -0.0147 0.0048 2,526 3,887 6,413 
Has a university degree -0.0081 0.0157 2,526 3,887 6,413 
Unemployed  0.0260 0.0088 2,526 3,887 6,413 
Mental health 1.0121 0.0903 2,417 3,745 6,162 
      

Notes:  ATT: Average Treatment Effect on the Treated; Std. err: Robust Abadie/Imbens standard errors. The 
covariates included are from Specification 2.    

 
Web Appendix Table 3    Nearest neighbour propensity score matching 

 ATT  std.err  N (control)  N (treated) Total N 
      
5+ GCSE -0.0377 0.0104 2,401 3,732 6,133 
Any A-levels? -0.0379 0.0126 2,526 3,887 6,413 
Best 3 A-level points -8.3539 3.3439 1,549 2,122 3,671 
      
ln(Income) -0.0133 0.0046 2,526 3,887 6,413 
Has a degree -0.0102 0.0125 2,526 3,887 6,413 
Unemployed  0.0285 0.0078 2,526 3,887 6,413 
Mental health 0.9584 0.0818 2,417 3,745 6,162 
      

Notes: ATT: Average Treatment Effect on the Treated; Std. err: Robust Abadie/Imbens standard errors; 
nn=5; caliper=0.15. The covariates included are from Specification 2. 
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Web Appendix Table 4:    OLS and IV estimates of the effects of bullying (binary and continuous) on girls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Notes:   Gender diff’: the p-value from a test for differences in the effect between the boys and girls subgroup. Robust standard errors, clustered by school, in parentheses. *** p<0.01, ** 
p<0.05, * p<0.10. The covariates included are from Specification 2. 
 

Dependent Variable: 5+ GCSE Any A-
levels 

Best 3 A-level 
points Ln(income) University 

degree Unemployed Mental health 

(OLS) Binary treatment 
        
β -0.0355*** -0.0309* -4.522 -0.00710 -0.0456*** 0.0210* 1.019*** 
se(β) (0.0126) (0.0163) (4.970) (0.00478) (0.0174) (0.0118) (0.119) 
N 3,416 3,570 2,085 3,570 3,570 3,570 3,436 
        
Gender diff. 
 p-value 0.418 0.475 0.896 0.274 0.029 0.376 0.082 

        

(OLS) Continuous treatment         

β -0.0235 -0.0165 -4.299 -0.00556 -0.0166* 0.0103 0.224*** 

se(β) (0.0143) (0.0113) (5.190) (0.00419) (0.00982) (0.0115) (0.0798) 

N 2,430 2,437 1,544 2,437 2,437 2,437 2,359 

        
Gender diff.  
p-value 0.529 0.287 0.967 0.740 0.713 0.603 0.848 

        

(IV) Continuous treatment          

β -0.0374 -0.0656 -14.50 -0.0256* -0.0496 0.0108 0.324 
se(β) (0.0340) (0.0428) (109.9) (0.0141) (0.0315) (0.0211) (0.215) 
N 1,832 1,836 1,205 1,836 1,836 1,836 1,779 
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Web Appendix Table 5:    OLS and IV estimates of the effects of bullying on boys.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Robust standard errors, clustered by school, in parentheses. *** p<0.01, ** p<0.05, * p<0.10. The covariates included are from Specification 2

Dependent Variable: 5+ GCSE Any A-levels Best 3 A-
level points Ln(income) University 

degree Unemployed Mental 
health 

(OLS) Binary treatment 
        
β -0.0208 -0.0201 -6.808 -0.0108* 0.0313 0.0383*** 0.660*** 

se(β) (0.0161) (0.0183) (5.830) (0.00592) (0.0201) (0.00972) (0.130) 

N 2,717 2,843 1,586 2,843 2,843 2,843 2,726 

        

(OLS) Continuous treatment         

β -0.00599 -0.0317*** -1.501 -0.00549 -0.0192* 0.00912 0.309*** 
se(β) (0.00857) (0.0113) (4.427) (0.00351) (0.0104) (0.00632) (0.0848) 
N 2,020 2,027 1,236 2,027 2,027 2,027 1,948 
        
(IV) Continuous treatment          

β -0.00861 -0.0406 -17.23 -0.0120 -0.0662** 0.0374 0.964*** 
se(β) (0.0251) (0.0359) (11.53) (0.00812) (0.0291) (0.0261) (0.366) 
N 1,612 1,619 1,004 1,619 1,619 1,619 1,558 
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Web Appendix Table 6:   Full IPWRA results table 

 

Dependent 
Variable: 

5+ 
GCSE 

Any A-
levels 

Best 3 
A-level 
points 

University 
degree Ln(income) Unemployed Mental 

health 
        

No bullying  ref ref ref ref ref ref ref         
β No non-

violent / low 
violent 

-0.004 0.039 -18.842 -0.022 -0.0090 -0.0389 0.4532 

s.e. 0.026 0.031 10.233 0.031 0.0107 0.0131 0.2187 
         

β No non-
violent / high 

violent 
-0.022 -0.018 -20.724 -0.037 -0.0289 -0.0057 0.4176 

s.e. 0.048 0.054 25.542 0.053 0.0188 0.0276 0.4387 
         

β Low non-
violent / no 

violent 
-0.047 0.035 5.847 0.089 -0.0115 0.0285 0.5870 

s.e. 0.024 0.027 5.295 0.030 0.0106 0.0187 0.2035 
         

β Low non-
violent / low 

violent 
-0.066 -0.012 7.602 0.030 0.0070 0.0223 0.7052 

s.e. 0.033 0.038 7.526 0.039 0.0128 0.0236 0.2893 
         

β Low non-
violent / high 

violent 
-0.111 -0.058 -3.547 -0.035 -0.0456 -0.0026 0.9149 

s.e. 0.037 0.043 19.371 0.050 0.0168 0.0233 0.3567 
         

β High non-
violent / no 

violent 
-0.162 -0.106 14.500 -0.046 -0.0099 0.0183 0.6867 

s.e. 0.039 0.041 11.371 0.049 0.0170 0.0239 0.2934 
         

β High non-
violent / low 

violent 
-0.005 0.000 -22.610 0.035 -0.0205 0.0248 0.8606 

s.e. 0.042 0.045 11.567 0.048 0.0141 0.0298 0.3092 
         

β High non-
violent / high 

violent 
-0.116 -0.105 6.545 -0.050 -0.0370 0.0791 1.3709 

s.e. 0.034 0.041 10.933 0.043 0.0133 0.0281 0.2736 
        

N 5,924 6,650 3,531 6,650 6,650 6,650 6,378 
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Web Appendix Table 7:   GMM  estimates of the effects of bullying separately by gender 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes:   Robust standard errors, clustered by school, in parentheses. *** p<0.01, ** p<0.05, * p<0.10.  The covariates included are from Specification 2.  

 

Dependent 
Variable: 5+ GCSE Any A-levels Best 3 A-

level points Ln(income) University 
degree Unemployed Mental 

health 

        

Girls         

β -0.0401 -0.0659 -18.45 -0.0254* -0.0499 0.0104 0.326 
se(β) (0.0335) (0.0417) (108.3) (0.0136) (0.0311) (0.0210) (0.213) 

        

N 1,728 1,732 1,069 1,732 1,732 1,732 1,672 

        

Boys        

β -0.00849 -0.0413 -18.76* -0.0110 -0.0651** 0.0371 0.961*** 
se(β) (0.0247) (0.0353) (11.36) (0.00802) (0.0286) (0.0258) (0.361) 

        

N 1,497 1,508 857 1,508 1,508 1,508 1,437 
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