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NON-TECHNICAL SUMMARY  

fair society may feature a certain amount of economic inequality, provided that there is equality of 

life chances rely more on individual effort and hard 

work than on parental socioeconomic status and family background. Intergenerational income mobility 

outcomes. It is a measure of the extent to which parental income determines grown-

economic performance. It is quantified by intergenerational earnings elasticity, also known as 

earnings. A larger earnings elasticity indicates less income mobility. While an extensive body of literature 

has estimated intergenerational earnings elasticities in developed and developing countries, and cross-

national comparative studies have flourished in recent years, there is surprisingly little research on 

earnings elasticity in Australia. Existing evidence is based predominantly on cross-sectional data, which 

obscures underlying dynamics. Trend analyses rely on different datasets for different time points, which 

faces issues of inconsistent income measures. Therefore, new and more robust estimates of earnings 

elasticity for Australia using recent longitudinal data and panel regression models are warranted. 

We use the Household, Income and Labour Dynamics in Australia Survey and the Longitudinal Labour 

Force Survey to examine the patterns and dynamics of father-son earnings elasticity in contemporary 

Australia. We contribute to the literature in the following ways. Methodologically, we implement two 

stage regression models that take advantage of longitudinal and other characteristics of the data. 

Substantive improvements are made by comparing different approaches to see how sensitive elasticity 

estimates are to analytic choices. First, detailed occupation categories enable us to estimate earnings 

elasticity based on the level at which occupations are disaggregated. Second, we examine changing 

patterns in earnings elasticity by considering linear and curvilinear trends over time. Third, 

comprehensive earnings measures allow us to assess the effect of earnings volatility on elasticity 

estimates.  

We find that intergenerational earnings persistence in contemporary Australia lies between 11% and 

30%, situating Australia internationally as a country with moderately high income mobility. The overall 

trend of earnings elasticity since 2001 is upward, although there is a declining tendency after 2011. More 

data are required before we can conclude that the decline after 2011 signals a new trend. Elasticity 

estimates are larger using two-digit level occupations and two-sample approach than the estimates 

using one-digit occupations and one-sample approach, respectively, and using different earnings 

measures results in substantially different elasticity estimates. We read these findings as indicating that 

elasticities are sensitive to the use of methods and data. 
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Abstract 

This paper contributes to the existing income mobility literature by adopting a two-stage 

panel regression model, investigating linear and curvilinear trends over time, and assessing 

the effects of using different levels of occupational disaggregation, different sample 

compositions, and different earnings measures on the magnitude of father-son earnings 

elasticity in Australia. We find that the overall intergenerational earnings elasticity in 

Australia between 2001 and 2013 ranges from 0.11 to 0.30, with evidence of an upward 

trend. Elasticity estimates are larger using two-digit level occupations and two-sample 

approach than the estimates using one-digit occupations and one-sample approach, 

respectively, and earnings volatility has substantial effects on elasticities. We read these 

findings as indicating that Australia has a moderately high level of income mobility by 

international standards, and that findings are sensitive to the use of methods and data. 

 

Keywords: parental background; intergenerational transmission; earnings elasticity; 

occupation; trends; panel data; Australia 
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1 Introduction 

Strengthening and maintaining the land of a “fair go” has been a policy aim in Australia for 

decades. A fair society, as many Australians believe, may feature a certain amount of 

economic inequality, provided that there is equality of opportunity (Andrews & Leigh, 2009). 

Equal opportunity means that people’s life chances rely more on individual effort and hard 

work than on circumstances over which they have no control, such as parental status and 

family background. Theoretically, if parental socioeconomic status has little influence on 

individuals’ life outcomes, we should observe high levels of intergenerational mobility. In 

reality, evidence from many western countries tells the opposite story: children from high 

income families are more likely to become top earners than children from low income 

families (Corak, 2013a). The fact that parental earnings capacity is a strong predictor of adult 

children’s economic performance has therefore been found in an extensive body of literature, 

and substantial attention has been paid to how intergenerational earnings elasticity is defined, 

estimated and compared. 

Intergenerational earnings elasticity is a measure of the extent to which parental earnings 

determine children’s earnings outcomes. As an index of intergenerational income mobility, 

earnings elasticity benchmarks adult children’s earnings with their parents’ earnings after 

controlling for demographic characteristics. Hence, a larger earnings elasticity indicates less 

income mobility. 

While a burgeoning literature has estimated the intergenerational earnings elasticity in 

developed and developing countries and cross-national comparative studies have flourished in 

recent years, there is surprisingly little research on earnings elasticity in Australia. This gap 

needs to be addressed because Australia’s institutional and historical arrangements make it an 

important case study. First, for most of the 20
th

 century, Australia had an internationally 

distinctive set of labour market institutions built around centralised pay setting by industrial 

tribunals that promoted both high real wages and substantial uniformity of pay and working 

conditions across occupations and industries (Castles, 1985). These institutions began to be 

unwound by successive governments in the 1990s, but they potentially lay a path-dependent 

foundation for earnings inequality and mobility that makes Australia a noteworthy case. 

Second, Australia has a relatively egalitarian culture (Thompson, 1994), characterised by 

public attitudes leaning towards egalitarianism, a relatively flat social structure that is not 

marked by pronounced symbolic or behavioural class distinctions, and strong anti-

discrimination legislation. Third, existing evidence shows that generally, intergenerational 
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mobility is inversely associated with inequality (OECD, 2011). Countries with higher 

mobility (i.e. lower earnings elasticity) exhibit less economic inequality (typically measured 

by the Gini index). Nevertheless, plotted on the Great Gatsby Curve (Corak, 2013b), which 

locates countries according to economic inequality and mobility, Australia presents a 

distinctive case with both a high level of mobility and a moderate level of inequality. New, 

robust evidence on intergenerational earnings elasticity in Australia would enrich 

international comparisons.  

Using panel data from the Household, Income and Labour Dynamics in Australia (HILDA) 

Survey and the Longitudinal Labour Force Survey (LLFS), we examine the patterns and 

dynamics of father-son earnings elasticity in contemporary Australia. Since fathers’ earnings 

are not observable in the HILDA Survey, we apply a two-stage panel regression model which 

first computes fathers’ earnings based on sons’ reports of fathers’ occupations at stage one, 

and then estimates the earnings elasticity at stage two. We add to the existing literature by (i) 

using more recent data than those in previous studies, (ii) establishing trends in earnings 

elasticity in Australia over time, and (iii) examining how occupational disaggregation, 

different sample compositions, and different earnings measures affect elasticity estimates.  

Key findings show that father-son earnings elasticity in Australia between 2001 and 2013 

ranges from 0.11 to 0.30, and has increased over the observation window. Elasticity estimates 

are larger using two-digit level occupations and two-sample approach than the estimates using 

one-digit occupations and one-sample approach, respectively, and using different earnings 

measures results in substantially different elasticity estimates. We read these findings as 

indicating that Australia has a moderately high level of income mobility by international 

standards, and that findings are sensitive to the use of methods and data. This point has two 

important implications: single analyses of earnings elasticity should explore the extent to 

which results are robust to analytic choices, and comparative analyses should recognise that 

differences in approach across comparative settings may contribute to finding comparative 

similarities or differences.  

The structure of this paper is as follows. In section two, we review the existing literature and 

outline our contributions. In section three, we detail the data sources, sample selection, 

statistical models, common methodological issues and how we address these issues. We 

proceed by explaining our findings in section four. Section five concludes. 
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2 Literature review 

Research on intergenerational socioeconomic status can be traced back to the 1920s (Sorokin, 

1927) with modern work on occupational mobility from the 1950s (Glass, 1954) and 

socioeconomic status from the 1960s (Blau & Duncan, 1967). In the last three decades, 

economic research on income mobility (typically measured using earnings elasticity) has 

gained in popularity (Blanden, Haveman, Smeeding, & Wilson, 2014; Torche, 2015). The 

measure of income used to estimate earnings elasticity differs across studies, primarily due to 

data availability. Ideally, researchers would use labour income (i.e. earnings from 

employment), as this is argued to best capture the effect of parental economic capacity on 

offspring’s outcomes (Björklund & Jäntti, 2012). Earnings elasticity has been widely accepted 

and estimated on different parent-children linkages, among which father-son earnings 

elasticity is the most commonly investigated. Correspondingly, a variety of estimation 

methods are employed to accommodate differences in the available data.  

International comparisons provide almost unanimous evidence that intergenerational earnings 

elasticity is highest in developed countries such as the US, UK, Italy and developing countries 

like Brazil, China and South Africa, and lowest in Nordic countries (Blanden, 2013; Causa & 

Johansson, 2010; Corak, 2006; D'Addio, 2007; Gong, Leigh, & Meng, 2012; Grawe, 2004; 

Jäntti et al., 2006; Mocetti, 2007; Ng, 2007; Piraino, 2007; Solon, 2002). Most countries have 

earnings elasticities that fall within the Nordic-US spectrum, such as France (Lefranc & 

Trannoy, 2005), Germany (Couch & Dunn, 1997), Canada (Corak, 2013a), Australia (Leigh, 

2007), Japan (Lefranc, Ojima, & Yoshida, 2008; Ueda, 2009) and South Korea (Ueda, 2013). 

A summary of estimates for OECD countries since the late 1980s can be found in Table A1 in 

the Appendices. 

Most studies use cross-sectional data to estimate earnings elasticity, understood as the 

regression coefficient on parent’s earnings in an equation modelling offspring’s earnings. This 

shows the percentage difference in offspring’s earnings, for a one percent difference in 

parental earnings. Estimation takes place via ordinary least squares (OLS) or instrumental 

variable (IV) methods. Early contributors have found that OLS results are downwardly 

biased, in which case IV estimation is a good remedy, provided that a valid instrument is 

identified (Björklund & Jäntti, 1997; Solon, 1992; Zimmerman, 1992). More recently, other 

methods have also been applied, including quantile regression (Bratberg, Nilsen, & Vaage, 

2007), tobit regression (Mazumder, 2005), two-sample two-stage least squares (TS2SLS) 

models (Gong, Leigh, & Meng, 2012; Mocetti, 2007; Nicoletti & Ermisch, 2007; Piraino, 
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2007), simulation extrapolation method (Ueda, 2013) and non-parametric analyses 

(Bhattacharya & Mazumder, 2011; Ueda, 2013). 

Daughters’ permanent earnings are less predictable than sons’, because women’s employment 

circumstances remain more heterogeneous than men’s (Steiber & Haas, 2012), with high rates 

of part-time work and long-term economic inactivity. Father-daughter earnings elasticities are 

also complicated by occupational sex segregation, while mother-daughter elasticities are 

complicated by women’s discontinuous employment histories.  As a result, most attention in 

the literature has been devoted to father-son earnings elasticities – although with good-quality 

data and careful sample selection, under certain assumptions, father-daughter elasticities can 

be robustly estimated (see Bratberg, Nilsen, & Vaage, 2007; Chadwick & Solon, 2002; Couch 

& Dunn, 1997; Grawe, 2004; Hansen, 2010; Hertz, 2007; Lee & Solon, 2009; Lefranc & 

Trannoy, 2005; Mazumder, 2005; Pekkala & Lucas, 2007). Comparisons by ethnicity 

(Bhattacharya & Mazumder, 2011; Hertz, 2006; Kearney, 2006; Mazumder, 2014) and 

migrant status (Hammarstedt & Palme, 2012; Leigh, 2007) have also been undertaken.   

Research on intergenerational earnings elasticity in Australia, compared to other OECD 

countries, is scarce, and the available evidence is “limited and inconclusive” (Argy, 2006: 

14). The most recent study of earnings elasticity in Australia was conducted by Leigh (2007), 

who estimated father-son single-year earnings elasticities using hourly wages and four 

different survey datasets.
1
 He found that earnings elasticity in Australia is likely to be 0.2-0.3 

(compared to 0.4-0.6 in the United States), with no significant changes between 1965 and 

2004.  

Leigh’s (2007) work provides the best Australian evidence to date, but is not without 

limitations. First, his conclusions are based on analyses of different datasets with different 

income measures: annual income measured in six bands in the 1965 survey, weekly income 

measured in 16 bands in the 1973 survey, and a continuous income measure in the 1987 and 

2004 surveys. Second, Leigh uses cross-sectional methods that capture earnings elasticities in 

a point-in-time fashion, which obscures underlying dynamics. At the time of writing these 

data were the best available. However, as Corak (2011: 75) points out, the study of 

intergenerational earnings elasticity “ideally requires data from a longitudinal study of a large, 

nationally representative sample of individuals and families”. Finally, the most recent data 

                                                           
1
 The data in Leigh (2007) come from the following four surveys: Social Stratification in Australia (1965), 

Social Mobility in Australia Project (1973), National Social Science Survey (1987-1988), and Household, 

Income and Labour Dynamics in Australia Survey (2001-2004). 
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Leigh used are now over ten years old. Therefore, while Leigh pioneered the research of 

intergenerational earnings elasticity in Australia, work that extends his analyses by leveraging 

recent longitudinal data and panel regression models is warranted. 

We contribute to the existing literature on earnings elasticity in Australia in the following 

ways. Methodologically, we employ a two-stage panel regression model as our main model, 

supplemented by an improved two-sample two-stage estimation in which interval regression 

is used at stage one and a random-effects model at stage two. Substantive improvements are 

made by comparing different approaches to see how sensitive elasticity estimates are to 

analytic choices. First, detailed occupation categories enable us to estimate the earnings 

elasticity based on the level at which occupations are disaggregated. Second, we examine 

changing patterns in earnings elasticity by considering linear and curvilinear trends over time. 

Third, comprehensive earnings measures allow us to assess the effect of earnings volatility on 

elasticity estimates. 

 

3 Data and methods 

3.1 Data 

3.1.1 The Household, Income and Labour Dynamics in Australia Survey 

Our main analyses are performed on the Household, Income and Labour Dynamics in 

Australia (HILDA) Survey. The HILDA Survey is a nationally representative panel survey 

initiated in 2001 with 13,969 respondents from 7,682 households. Data were collected 

primarily via face-to-face interviews and self-complete questionnaires with in-scope 

respondents residing in private dwellings aged 15 years and over (Watson & Wooden, 2002). 

Since then, interviews with participants have been conducted annually. The HILDA Survey 

has relatively high wave-on-wave response rates ranging from 86.8% in wave two to 96.4% in 

wave 13 (Summerfield et al., 2014). 

Detailed information on the labour force participation of respondents is collected, with a 

multiplicity of income measures readily available. These include weekly as well as annual 

wages and salary from different sources and for both the main job and all jobs. Here, we will 

use five income types: hourly earnings from the main job; hourly earnings from all jobs; 

weekly earnings from the main job; weekly earnings from all jobs; and annual earnings. 

Weekly and annual earnings are directly reported by respondents, whereas hourly earnings are 

derived from weekly earnings divided by usual weekly hours of work. For confidentiality 
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reasons, the HILDA Survey top-coded reported earnings before creating derived gross income 

variables. Further changes in these derived variables include estimated gross income (by 

translating after-tax income) and imputed gross income (by a three-step imputation process, 

see Hayes & Watson, 2009). Since the imputed values change across waves (Summerfield et 

al., 2014), to minimise biases associated with changes in these self-reported earnings, we use 

the derived gross weekly and annual earnings variables. We adjust these earnings by using 

annual rates of the Consumer Price Index, taking year 2013 as the base year. 

The person questionnaire of the HILDA Survey contains modules on “family background” 

and “history and status of parents”. The former is administered annually whereas the latter is 

administered in waves eight and 12. These modules contain rich retrospective information on 

the employment circumstances of the respondent’s father and mother when the respondent 

was 14 years old, including employment status and occupational titles at different levels of 

disaggregation. 

Information on father’s age when the respondent was 14 was derived from responses to 

survey questions asking about father’s year of birth and current age (if alive). These 

questions, however, were only included in waves eight and 12. Since respondents in the 

HILDA Survey are at least 15 years of age, father’s age when they were 14 constitutes time-

constant information. As a result, such information can be extrapolated to other survey waves.  

Occupational data are coded to the 2006 Australian and New Zealand Standard Classification 

of Occupations (ANZSCO). The 2006 ANZSCO is structured into five hierarchical levels: 

major groups (one-digit level, n=8), sub-major groups (two-digit level, n=43), minor groups 

(three-digit level, n=97), occupational units (four-digit level, n=358), and individual 

occupations (n=998) (ABS, 2006). In its general release, the HILDA Survey contains one- 

and two-digit level occupations, whereas in its unconfidentialised release, occupations are 

disaggregated up to the four-digit level. Using the same level of occupational disaggregation 

for fathers and sons improves the computation of fathers’ earnings. 

It is worth pointing out the trade-off between occupational precision and small sample sizes in 

some occupation categories at highly-disaggregated levels. Using detailed occupational levels 

in estimating earnings elasticity reduces within-occupation heterogeneity that exists at more 

aggregated levels. However, a highly-disaggregated occupational level such as the four-digit 

level yields sample sizes for some occupation categories that are too small for robust analysis. 



7 
 

Therefore, elasticity estimates from an occupational level that attain a balance —the two-digit 

level— are our preferred estimates. 

 

3.1.2 The Longitudinal Labour Force Survey (2008-2010)  

We use the Longitudinal Labour Force Survey (LLFS) as an auxiliary dataset to conduct a 

two-sample two-stage regression in sensitivity analyses. The LLFS provides labour related 

data derived from the monthly Labour Force Survey (LFS) between January 2008 and 

December 2010. Respondents in the LFS are selected for a period of 8 consecutive months, 

and their responses have been linked across time to form the longitudinal data structure (ABS, 

2012). The LLFS contains information from over 150,000 households, resulting in over 1.8 

million records (ABS, 2012). 

 

3.2 Methodological approaches 

Becker and Tomes (1979, 1986) first introduced the theoretical model by which the 

intergenerational earnings elasticity is estimated: 

 

                                                     ln 𝑌𝑖
𝑐 = 𝛼 + 𝛽 ln 𝑌𝑖

𝑝 + 𝜀𝑖                                                  (1) 

 

where 𝑌𝑖
𝑐  and 𝑌𝑖

𝑝
 denote adult children’s and parental lifetime earnings, respectively, and 𝛽 

reflects the extent to which intergenerational earnings persist. In practice, lifetime earnings for 

both generations cannot be captured within most longitudinal surveys, requiring a measure of 

short-run earnings as proxies for long-run earnings (Lee & Solon, 2009). However, the use of 

such a proxy should be exercised with particular caution due to measurement errors from a 

variety of sources. First, the number of periods these proxies use influences the precision of 

the results. Single-year estimation, as in the early literature, produces downward-biased 

elasticities due to response errors and transitory fluctuations (Corak, 2006; D'Addio, 2007; 

Mazumder, 2001). Second, elasticities vary depending on the age at which earnings are 

measured (life-cycle bias). For instance, the computation of young fathers’ earnings, or the 

estimation using earnings of sons who are at an early stage of their careers, may result in the 

elasticity estimates biased downwards (D'Addio, 2007; Grawe, 2006; Piraino, 2007). 
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The longitudinal data analysis in this study mitigates the first measurement error. We apply a 

two-stage panel regression model with the computation of fathers’ earnings at stage one and 

the estimation of earnings elasticity at stage two. Since fathers’ earnings when their sons were 

14 are a time-constant construct, we employ a between-effect model that uses the over-time 

averages in sons’ earnings, ages and occupations before computing fathers’ earnings, as 

outlined below: 

 

                                      ln 𝑌𝑖𝑡
𝑠̅̅ ̅̅ ̅̅ = 𝛼 + 𝜽′�̅�𝒊𝒕

𝒔 + 𝛿1�̅�𝑖𝑡
𝑠 + 𝛿2�̅�𝑖𝑡

𝑠 2
+ 𝑢𝑖 + �̅�𝑖𝑡                              (2) 

 

Where 𝜽′ ∶= (𝜃1, … , 𝜃𝑁), and  𝑿𝒊𝒕
′ ∶= (𝑥𝑖𝑡

(1)
, … , 𝑥𝑖𝑡

(𝑁)
). 𝑌𝑖𝑡

𝑠 denotes the earnings of son 𝑖 at time 

𝑡, 𝑿𝒊𝒕 is a list of occupation dummies, each of which is denoted as 𝑥𝑖𝑡
(𝑗)

, 𝑗 = 1, … , 𝑁; 𝐴𝑖𝑡
𝑠  

represents the 𝑖th
 son’s age at time 𝑡, and 𝑁 is the total number of occupation categories, 

which depends on the level of aggregation used. We assume 𝑢𝑖~𝑖. 𝑖. 𝑑(0, 𝜎𝑢
2), 

𝑒𝑖𝑡~𝑖. 𝑖. 𝑑(0, 𝜎𝑒
2), and 𝑐𝑜𝑣(𝑢𝑖 , 𝑒𝑖𝑡) = 0. The coefficients obtained from model (2) are then 

used to compute fathers’ earnings (denoted as 𝑌𝑖𝑡
𝑓
) by substituting sons’ retrospective 

reporting of fathers’ occupations and ages in the following equation: 

 

                                                    𝑌𝑖𝑡
𝑓

= 𝑒𝛼+𝜽′𝑿𝒊𝒕
𝒇

+𝛿1𝐴𝑖𝑡
𝑓

+𝛿2𝐴𝑖𝑡
𝑓 2

                                                (3) 

 

The theoretical model (1) of earnings elasticity is improved in recent studies by adding both 

sons’ and fathers’ ages as control variables (Leigh, 2007; Piraino, 2007). We follow this 

updated method, centring age at 40, and fitting a random-effects model: 

 

ln 𝑌𝑖𝑡
𝑠 = �̃� + 𝛽 ln 𝑌𝑖𝑡

𝑓
+ 𝜆1(𝐴𝑖𝑡

𝑠 − 40) + 𝜆2(𝐴𝑖𝑡
𝑠 − 40)2 + 𝜆3(𝐴𝑖𝑡

𝑓
− 40) +

𝜆4(𝐴𝑖𝑡
𝑓

− 40)
2

+ 𝛾𝑡 + �̃�𝑖 + �̃�𝑖𝑡                                                                                 (4) 

 

The random-effects model takes account of longitudinal dependence (repeated measures for 

individuals) in the data, whereas the cross-sectional regression model does not. We 
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subsequently examine curvilinear trends in elasticity by interacting fathers’ logarithmic 

earnings with different powers of the time variable, and adding the interaction term in model 

(4). These are generalised to the function below: 

 

ln 𝑌𝑖𝑡
𝑠 = �̌� + 𝑓(𝑛)(𝑡) ∙ ln 𝑌𝑖𝑡

𝑓
+ �̌�1(𝐴𝑖𝑡

𝑠 − 40) + �̌�2(𝐴𝑖𝑡
𝑠 − 40)2 + �̌�3(𝐴𝑖𝑡

𝑓
− 40) +

�̌�4(𝐴𝑖𝑡
𝑓

− 40)
2

+ 𝑔(𝑛)(𝑡) + �̌�𝑖 + �̌�𝑖𝑡                                                                         (5) 

 

Where 𝑓(𝑛)(𝑡) and 𝑔(𝑛)(𝑡) are functions of time 𝑡 with power 𝑛, 𝑛 = 1, 2, 3. To be specific, 

denote 𝝋′(𝑛)
∶= (𝜑0, … , 𝜑𝑛) as the coefficient vector for the interaction terms with power 𝑛, 

and 𝝎′(𝑛)
∶= (𝜔1, … , 𝜔𝑛) as the coefficient vector for time 𝑡 with power 𝑛. 𝑓(𝑛)(𝑡) and 

𝑔(𝑛)(𝑡) can then be written as: 

 

                                                𝑓(𝑛)(𝑡) = ∑ 𝜑𝑘 ∙ 𝑡𝑘𝑛
𝑘=0 = 𝝋′(𝑛)

𝑻𝒇
(𝑛)

                                    (6) 

                                                𝑔(𝑛)(𝑡) = ∑ 𝑤𝑙 ∙ 𝑡𝑙𝑛
𝑙=1 = 𝝎′(𝑛)

𝑻𝒈
(𝑛)

                                      (7)                                                                   

 

Where 𝑻𝒇
′ (𝑛)

∶= (1, 𝑡, … , 𝑡𝑛) and 𝑻𝒈
′ (𝑛)

∶= (𝑡, … , 𝑡𝑛). In this way, we depict the linear, 

quadratic and cubic trends of earnings elasticity. Model diagnostics then help decide which 

trend fits the data best.  

To perform the two-sample two-stage estimation, LLFS data are used at stage one. Earnings 

in the LLFS, however, are main-job weekly earnings in banded form: with a width of $100, 

earnings are grouped into 21 intervals, from $1 - $99 per week through to more than $1999 

per week. We thus use interval regression to estimate the relationship between respondents’ 

logarithmic earnings, ages and occupations. The coefficients are then substituted in equation 

(3), with which fathers’ earnings are independently computed. The elasticities are thereafter 

estimated by repeating model (4). Furthermore, we perform an analogous interval regression 

analysis using the HILDA Survey data at stage one by grouping sons’ observed main-job 

weekly earnings into the same categories as those in the LLFS, and repeat the aforementioned 

steps. The results are then compared to explore the differences between the one-sample and 

two-sample approaches.  
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In relation to the life-cycle bias discussed previously, the age distributions of fathers and sons 

in our data ameliorate the downward bias in estimating earnings elasticity. As documented in 

previous research, the bias is small and not significant if current earnings as proxies for 

lifetime earnings are measured between the early thirties and the middle forties (Böhlmark & 

Lindquist, 2006; Haider & Solon, 2006). In operation, age is centred at 40 and restricted to a 

certain range for estimation (Gong, Leigh, & Meng, 2012; Lee & Solon, 2009). Both sons’ 

and fathers’ ages in our data exhibit normal distributions with mean and median age ranging 

from 42 to 45, ensuring precise estimation with reduced life-cycle bias. 

 

3.3 Sample selection  

Our HILDA Survey sample consists of male respondents (hereafter referred to as sons) who 

are employed with positive earnings and non-missing data on the analytical variables and who 

took part in at least one survey wave. In this way we create an unbalanced panel to avoid the 

loss of information associated with a balanced panel. We correct implausible values of 

fathers’ ages when their sons were 14 by excluding fathers whose ages were below 12 or 

above 70 when their sons were born. To minimise volatility associated with early or late 

career effects when computing fathers’ earnings, we run model (2) with sons in prime 

working ages (i.e. ages between 30 and 55). Ninety-four percent of fathers’ ages when sons 

were 14 in our main model fall within this range. When estimating earnings elasticity at stage 

two, we exclude sons younger than 25 or older than 64, as they are more likely to be out of 

the labour force for education or retirement reasons. We similarly exclude fathers outside the 

same age range when their sons were 14.
2
 Likewise, the LLFS sample comprises male 

respondents aged 25-64 who were in employment and provided positive earnings. 

 

3.4 Descriptive statistics  

Table 1 reports means and standard deviations for the main analytical variables in our two 

datasets. The distribution for ages of respondents in our LLFS sample resembles that of sons 

in the HILDA Survey (see table A2 in the appendices), and both datasets use 2006 ANZSCO 

to classify occupations. Like the HILDA Survey general releases, the LLFS contains 

occupations at the one- and two-digit level. These resemblances help map and bridge the two 

                                                           
2
 We also tested the effects of restricting both fathers’ and sons’ ages at stage one on elasticity estimates, and the 

results are very close to those by restricting ages at stage two. These results are available upon request.  
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samples, largely minimising unobserved heterogeneity due to the introduction of a new 

sample while enabling two-sample two-stage estimation. 

 

Table 1 Descriptive statistics for main analytical variables in the model from two Australian samples 

Variable 
Sons 

Fathers 

1-digit 2-digit 

Mean  s.d. N Mean  s.d. N Mean  s.d. N 

HILDA          

Log hourly earnings in the 

main job 
3.41 0.52 32363     3.36 0.20 38382 3.28 0.32 38382 

Log hourly earnings in all 

jobs 
3.40 0.52 32082     3.35 0.19 38382 3.27 0.33 38382 

Log weekly earnings in the 

main job 
7.13 0.62 32400     7.11 0.28 38382 7.04 0.34 38382 

Log weekly earnings in all 

jobs 
7.15 0.61 32109     7.13 0.28 38382 7.05 0.34 38382 

Log annual earnings 11.06 0.73 35000     11.01 0.30 38382 10.93 0.39 38382 

Age  42.43 10.46 41043     44.76 6.27 41043     44.76 6.27 41043     

Wave  7.63 3.76 41043           

LLFS          

Age 42.42 10.67 26349           

Earning groups          

    [$1, $100) 0.0055         

    [$100, $200) 0.010         

    [$200, $300) 0.014         

    [$300, $400) 0.018         

    [$400, $500) 0.019         

    [$500, $600) 0.032         

    [$600, $700) 0.058         

    [$700, $800) 0.075         

    [$800, $900) 0.082         

    [$900, $1000) 0.080         

  [$1000, $1100) 0.087         

  [$1100, $1200) 0.065         

  [$1200, $1300) 0.072         

  [$1300, $1400) 0.048         

  [$1400, $1500) 0.040         

  [$1500, $1600) 0.049         

  [$1600, $1700) 0.033         

  [$1700, $1800) 0.029         

  [$1800, $1900) 0.022         

  [$1900, $2000) 0.020         

  [$2000, +∞) 0.14         

Notes: Sons’ earnings adjusted for inflation using the Consumer Price Index. Father’s predicted earnings differ 

based on the levels of occupations we use at stage one in our main model. The ages for both the HILDA Survey 

and the LLFS samples are restricted to 25-64.  

Source: Authors’ calculations from the HILDA Survey (2001-2013) and the LLFS (2008-2010). 
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4 Results 

4.1 Intergenerational earnings elasticity by levels of occupational disaggregation 

We start by fitting our main model, as in models (2)-(4) in section 3. Table 2 displays the 

elasticity results by levels of occupational disaggregation. The father-son earnings elasticity in 

Australia between 2001 and 2013 ranges from 0.11 to 0.30. This is consistent with Leigh’s 

(2007) estimates for early cohorts. The point estimates are larger at two and three 

occupational digits than one and four (see Figure 1). More detailed occupation categories do 

not uniformly produce lower elasticities, as might be expected if earnings vary by 

occupational categories and fathers’ and sons’ occupational categories are more likely to 

differ when occupations are disaggregated. Occupations at the two-digit level yield the 

highest elasticity, whereas those at the four-digit level yield the lowest.  

 

Table 2 Father-son earnings elasticity in Australia, by levels of occupational disaggregation 

Results  
Occupational disaggregation 

One digit Two digits Three digits Four digits 

Elasticity 0.231 0.259 0.235 0.112 

R
2
 (overall) 0.043 0.060 0.061 0.050 

rho 0.694 0.690 0.689 0.693 

N (observations) 30175 30175 30175 30175 

N (individuals) 4960 4960 4960 4960 

Notes: Elasticities estimated using hourly earnings in the main job. All elasticities are statistically significant at 

the  0.1% level.  

Source: Author’s calculations from the HILDA Survey (2001-2013). 
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Figure 1 Father-son earnings elasticity with 95% confidence intervals, by levels of occupational 

disaggregation 

 

Notes: Elasticities estimated using hourly earnings in the main job. All elasticities are statistically significant at 

the  0.1% level.  

Source: Author’s calculations from the HILDA Survey (2001-2013). 

 

4.2 Trends in intergenerational earnings elasticity over time 

The results obtained from our main model are overall mean elasticities across 13 years. In this 

section we extend our main model by incorporating the interaction terms of fathers’ 

logarithmic earnings with survey year, namely models (5)-(7), to delineate trends in earnings 

elasticity over time. We first include the product of fathers’ earnings and year, assuming the 

trend is linear. The linear assumption is the simplest way to capture overall changes in the 

elasticity. The changes can be derived from the marginal effects of fathers’ earnings, namely, 

𝑓(𝑛)(𝑡) in model (6). Figure 2 presents the linear trends, annotated with elasticities in each 

year. There is a clear upward tendency in father-son earnings elasticity at the one- and two-

digit level of occupational disaggregation, suggesting that earnings persistence in Australia is 

strengthening and there appears to be less mobility in the long run. 
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 Figure 2 Linear trends of father-son earnings elasticity in Australia 

 

Notes: Elasticities estimated using hourly earnings in the main job. All elasticities are statistically significant at 

the 0.1% level.  

Source: Author’s calculations from the HILDA Survey (2001-2013). 

 

A linear trend assumes that earnings elasticity is changing by a constant amount over time. 

This may not be empirically accurate. To address this issue, we fit models including higher-

order polynomials of the year variable and plot them with the linear trends for comparison 

purposes. We also test the significance of the added polynomials in ascending order. The test 

results show that the linear and cubic trends are statistically significant, indicating that the 

cubic model better depicts how earnings elasticity is changing over time.
3
 We plot the linear 

and cubic trends in Figure 3.    

The cubic trends display a similar overall increase in father-son earnings elasticity for both 

one- and two-digit level occupations. However, the shapes of the two cubic curves are 

different: earnings elasticity using two-digit occupations suggest a maximum in 2011 and a 

decline thereafter.  

  

                                                           
3
 We also considered using quartic trends, but the fourth-order survey year polynomials were not statistically 

significant. 
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Figure 3 Curvilinear trends of father-son earnings elasticity in Australia 

   

Notes: Elasticities estimated using hourly earnings in the main job. All elasticities are statistically significant at 

the 0.1% level.  

Source: Authors’ calculations from the HILDA Survey (2001-2013). 

 

4.3 Two-sample two-stage estimation of intergenerational earnings elasticity 

So far we base our estimations solely on HILDA Survey sample. While the one-sample 

approach is the conventional method, the application of two-sample two-stage least squares is 

becoming more common (Gong, Leigh, & Meng, 2012). In a similar vein, we implement a 

two-sample two-stage estimation in our analysis, utilising an ancillary LLFS sample at stage 

one and the HILDA Survey sample at stage two. Because earnings in the labour force survey 

are interval-coded, we use interval regression to compute fathers’ earnings. For comparison, 

we also present the HILDA Survey results based on interval regression. Furthermore, we 

append the results using actual earnings in the HILDA Survey to illustrate the effects of 

grouping earnings on the elasticity estimates. Table 3 summarises these results. 

The elasticities estimated using the two-sample approach are greater than those using the one-

sample approach by around 0.03. This resonates with Leigh’s (2007) finding that obtaining 

fathers’ earnings from an earlier sample increased elasticities. Interestingly, grouping earnings 



16 
 

in the same sample has an effect of increasing elasticity by an even larger magnitude, 

suggesting that interval-coded earnings create a larger measurement error in proxying lifetime 

earnings, which in turn affects the precision of the elasticity estimates.  

 

Table 3 Father-son earnings elasticity from two samples 

Occupational 

disaggregation 

Sample at stage one 

LLFS HILDA
a
 HILDA

b
 

One digit    

  Elasticity 0.222 0.190 0.155 

  R
2
 (overall) 0.045 0.044 0.044 

  rho 0.754 0.754 0.754 

  N (observations) 30211 30211 30211 

  N (individuals) 4962 4962 4962 

Two digits    

  Elasticity 0.248 0.219 0.175 

  R
2
 (overall) 0.051 0.052 0.052 

  rho 0.754 0.754 0.754 

  N (observations) 30208 30211 30211 

  N (individuals) 4961 4962 4962 

Notes: Elasticities estimated using weekly earnings in the main job. Weekly earnings in the LLFS are interval-

coded. All elasticities are statistically significant at the 0.1% level. 
a 
Respondents’ earnings are coded into the same intervals as those in the LLFS at stage one. 

b 
Respondents’ actual (i.e. unbanded) earnings are used. 

Source: Authors’ calculations from the HILDA Survey (2001-2013) and the LLFS (2008-2010). 

 

4.4 Intergenerational earnings elasticity using different earnings measures 

Elasticities depend also on the measure of earnings considered, in particular, the time period 

in which earnings are measured. We argue that, compared to hourly earnings, weekly and 

annual earnings are weaker in estimating elasticities, as they are affected by hours of work 

which are positively correlated with earnings rate. Since weekly and annual earnings are 

affected by working hours, these earnings are thus more volatile and their use should in theory 

yield lower elasticities. Drawing upon rich wage and salary information in the HILDA 

Survey, we test the effects of using different earnings measures on elasticity estimates.  

Evidence in table 4 confirms our prior argument: using weekly and annual earnings rather 

than hourly earnings noticeably reduces the estimated elasticities.
4
 Specifically, in results for 

both one- and two-digit occupations, using main-job weekly earnings reduces elasticities by 

33%, whereas using all-job weekly earnings decreases elasticities by 28%. Using annual 

                                                           
4
 We conducted robustness checks by excluding observations in the top and bottom 1% of the distribution of 

usual weekly work hours. The elasticity estimates are very similar to those displayed in this paper. These 

estimates are available upon request. 
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earnings lowers the elasticities by 33% and 20% at the one- and two-digit level occupational 

disaggregation, respectively. These results show that earnings volatility has substantial effects 

on elasticities, and that hourly earnings are a better proxy for permanent earnings and hence 

preferable when estimating intergenerational earnings elasticity. 

Main-job and all-job earnings produce similar elasticity estimates. This is because amongst 

sons who provided both positive main-job and all-job weekly earnings in our sample, 84.6% 

of them reported same earnings in their main jobs and all jobs, implying that other-job 

earnings are trivial for most respondents.
5
 Consistent with our previous findings, elasticities 

estimated using two-digit occupations are higher than those estimated using one-digit 

occupations, irrespective of the earnings measure considered.  

 

Table 4 Father-son earnings elasticity using different earnings measures 

Occupational 

disaggregation 

Earnings measures 

Hourly earnings 

from the main job 

Hourly earnings 

from all jobs 

Weekly earnings 

from the main job 

Weekly earnings 

from all jobs 

Annual 

earnings 

One digit      

  Elasticity 0.231 0.229
 
 0.155 0.164

 
 0.155

 
 

  R
2
 (overall) 0.043 0.043 0.044 0.044 0.033 

  rho 0.694 0.699 0.754 0.754 0.678 

  N (observations) 30175 29908 30211 29934 32675 

  N (individuals) 4960 4954 4962 4955 5017 

Two digits      

  Elasticity 0.259 0.256
 
 0.175 0.185 0.206

 
 

  R
2
 (overall) 0.060 0.059 0.052 0.052 0.042 

  rho 0.690 0.694 0.754 0.753 0.676 

  N (observations) 30175 29908 30211 29934 32675 

  N (individuals) 4960 4954 4962 4955 5017 

Notes: All elasticities are statistically significant at the 0.1% level. 

Source: Authors’ calculations from the HILDA Survey (2001-2013). 

 

5 Discussion and conclusion 

Our main objective in this paper is to provide up-to-date estimates of intergenerational 

income mobility in Australia by examining the patterns and dynamics of father-son earnings 

elasticity. In doing so, we provided novel perspectives on how elasticities are affected by 

levels of occupational disaggregation, trends over time, and different samples, methods and 

earnings measures. Using longitudinal data, we carried out a two-stage panel regression 

                                                           
5
 Further analyses on a sample consisting of sons who are multiple job holders in at least one wave show that 

elasticity estimates are larger than those in table 4 at both the one- and two-digit level of occupational 

disaggregation, except for a lower elasticity estimate using all-job hourly earnings at the two-digit level 

occupations. Detailed analysis results are available upon request. 
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analysis that improves upon earlier cross-sectional analyses, and adopted a two-sample two-

stage estimation strategy by incorporating a complementary labour force survey dataset.  

We find that intergenerational earnings persistence in contemporary Australia lies between 

11% and 30%, situating Australia as a country with moderately high income mobility in the 

global mobility regime. The overall trend of father-son earnings elasticity since 2001 is 

upward, although there is a declining tendency after 2011. More data are required before we 

can conclude that the decline after 2011 signals a new trend. Elasticity estimates are larger 

using two-digit level occupations and two-sample approach than the estimates using one-digit 

occupations and one-sample approach, respectively, and using different earnings measures 

results in substantially different elasticity estimates.  

The limitations of this study are two-fold. First, fathers’ earnings are computed, rather than 

observed, by using sons’ retrospective information. While the use of imputed parental 

earnings is routinely undertaken in previous literature due primarily to data limitations 

(Andrews & Leigh, 2009; Björklund & Jäntti 1997; Leigh, 2007; Piraino, 2007), retrospective 

measurements of parental background could be noisy depending on the extent to which 

respondents are aware of their parents’ statuses and how they report them (Wooden & 

Watson, 2000). Imputing father’s earnings from regressions on sons also assumes that the 

destination regression regime is the same as the origin regime, and such imputation uses a 

deterministic instead of stochastic model which results in the same imputed earnings for same 

age-occupation categories. In this respect, our computed fathers’ earnings may not perfectly 

represent their lifetime earnings. Second, we are only able to provide short-term snapshots of 

the changing patterns of father-son earnings elasticity with the available 13 waves of the 

HILDA Survey, from which to infer the long-run trend. This limitation could be addressed as 

new waves of the HILDA Survey are released. 

It is worth noting that while earnings elasticity is an internationally accepted index of 

measuring the extent to which a society is generationally mobile or immobile, cross-country 

comparisons should still be exercised with much caution because of differences in the data 

and methods (D’Addio, 2007; Jerrim, Choi & Rodríguez, 2013; Solon, 2002). Providing 

various estimates for Australia using different data and techniques helps show the range of 

elasticities consistent with different approaches, and enables more reliable estimates for 

Australia to be used in subsequent international comparisons. It also promotes a better 

understanding of income mobility patterns in a wealthy capitalist nation with a comparative 

large market, a relatively large immigrant population, an efficient redistributive tax and 

transfer system, and a history of low wage inequality.  
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Appendices 

Table A1 Intergenerational income mobility index across OECD countries 

Countries Dyad Index
a
 Method

b
 

Australia Father-son [0.2, 0.3] 2SLS 

Canada Father-son [0.13, 0.26] OLS, IV 

 Father-daughter 0.22 IV 

Denmark Father-son [0.071, 0.082] OLS 

 Father-daughter 0.034 OLS 

Finland Father-son [0.086, 0.18] OLS 

 Father-daughter 0.08 OLS 

France Father-son [0.36, 0.50] IV, TS2SLS 

 Father-daughter [0.23, 032] IV 

Germany Father-son [0.095, 0.34] OLS 

Italy Father-son [0.44, 0.50] TS2SLS 

Japan Father-son [0.25, 0.46] TS2SLS, IV 

 Father-daughter [0.3, 0.38] IV 

Korea Father-son [0.22, 0.36] IV, SIMEX 

 Father-daughter [0.34, 0.46] IV, SIMEX 

Norway Father-son [0.12, 0.29] OLS, quantile regression 

 Father-daughter [0.11, 0.22] OLS, quantile regression 

Spain Father-son [0.33, 0.60] OLS, IV 

Sweden Father-son [0.13, 0.30] OLS, IV 

 Father-daughter 0.19 OLS 

United Kingdom Father-son [0.22, 0.59] OLS, IV, TS2SLS 

 Father-daughter [0.33, 0.70] OLS, IV 

 Mother-son [0.06, 0.23] OLS, IV 

 Mother-daughter 0.24 OLS, IV 

United States Father-son [0.09, 0.61] OLS, IV, tobit, TS2SLS 

 Father-daughter [0.28, 0.61] OLS, IV, tobit, TS2SLS 

 Mother-son 0.29 IV 

 Mother-daughter 0.27 IV 

Notes: We summarise up-to-date measures of parent-children income linkages, and present broad income 

mobility coefficients which include, but are not confined to, earnings elasticities. This is given as a range within 

which the estimates from studies in each country fall.  
a
 The range [a, b] denotes the lowest and highest values for the income mobility index in the existing literature. 

b
 OLS: ordinary least squares; IV: instrumental variable; 2SLS: two-stage least squares; TS2SLS: two-sample 

two-stage least squares; SIMEX: simulation extrapolation. 

Source: Based on Corak (2006) and Gong, Leigh and Meng (2012), updated with new evidence from Bratberg, 

Nilsen and Vaage (2007), Dearden, Machin and Reed (1997), Hugalde (2004), Jäntti et al. (2006), Mazumder 

(2005), Nicoletti and Ermisch (2007), Piraino (2007), Ueda (2009) and Ueda (2013). 
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Table A2 Age distributions of sons in the HILDA Survey and male respondents in the LLFS 

Summary statistics HILDA LLFS 

Quantiles 

    1% 25 25 

    5% 26 26 

    10% 28 28 

    25% 34 34 

    50% 42 42 

    75% 51 51 

    90% 57 57 

    95% 60 60 

    99% 63 63 

Minimum 25 25 

Maximum 64 64 

Mean 42.43 42.42 

Standard deviation 10.46 10.67 

Variance 109.43 113.81 

Skewness 0.14 0.15 

Kurtosis 2.01 1.96 

Observations 41043 26349 

Source: Authors’ calculations from the HILDA Survey (2001-2013) and the LLFS (2008-2010). 

 

 


